• Title/Summary/Keyword: and system dynamics

Search Result 5,375, Processing Time 0.034 seconds

Development of a system dynamics computer model to assess the effects of developing an alternate water source on the water supply systems management (상수도 시스템 운영에 대한 대체 상수원 개발의 효과를 모의하기 위한 시스템다이내믹스 컴퓨터 모델의 개발)

  • Park, Suwan;Jung, So-Yeon;Sahleh, Vahideh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.755-763
    • /
    • 2014
  • In this paper, a System Dynamics(SD) computer simulation model has been developed to assess the effects of developing and providing an alternate water source. A water service index was also developed to estimate the level of overall customer satisfaction on water supply service. Data from the Busan water supply service and the Korea Development Institute regarding the Nak Dong river bank storage development were utilized during the modeling processes. Some important indicators of the system under study were analyzed by the simulations of development of the alternate water source for Busan. The developed SD model and the water service index can be further utilized as a tool that can assess the extent and timing of an additional service improvement project.

Simulation and Control of the Molten Carbonate System using Aspen $Dynamics^{TM}$ and ACM (Aspen $Dynamics^{TM}$와 ACM을 이용한 용융탄산염 연료전지 시스템의 모사 및 제어)

  • Jeon, Kyoung Yein;Kwak, Ha Yeon;Kyung, Ji Hyun;Yoo, Ahrim;Lee, Tae Won;Lee, Gi Pung;Moon, Kil Ho;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.423-431
    • /
    • 2011
  • Recentincreasing awareness of the environmental damage caused by the $CO_2$ emission of fossil fuelsstimulated the interest in alternative and renewable sources of energy. Fuel cell is a representative example of hydrogen energy utilization. In this study, Molten Carbonate Fuel Cell system is simulated by using $Aspen^{TM}$. Stack model is consisted of equilibrium reaction equations using $ACM^{TM}$(Aspen Custom Modeler). Balance of process of fuel cell system is developed in Aspen $Plus^{TM}$ and simulated at steady-state. Analysis of performance of the system is carried out by using sensitivity analysis tool with main operating parameters such as current density, S/C ratio, and fuel utilization and recycle ratio.In Aspen $Dynamics^{TM}$, dynamics of MCFC system is simulated with PID control loops. From the simulation, we proposed operation range which generated maximum power and efficiency in MCFC power plant.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

Dynamic Modeling of PIG Flow in Natural Gas Pipelines (천연가스배관내 피그흐름의 동적모델링)

  • Kim, Sang-Bong;Nguyen, Tan Tien;Yoo, Hui-Ryong;Rho, Yong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.241-246
    • /
    • 2001
  • This paper introduces modeling and solution for the dynamics of pipeline inspection gauge (PIG) flow in natural gas pipeline. Without of bypass flow, the dynamic behavior of the PIG depends on the different pressure between the rear and nose parts, which is generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. With bypass flow, the PIG dynamics also depends on the amount of bypass flow across its body. The mathematical model are derived for unsteady compressible flow of the PIG driving and expelled gas, and for dynamics of the PIG. The bypass flow is assumed to be incompressible with the condition of its Mach number smaller than 0.45. The method of characteristic (MOC) and the Runge-Kutta method are used to solve the system governing equations. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show that the derived mathematical model and the proposed solution are effective for estimation the dynamics of the PIG with and without bypass flow under given operational condition.

  • PDF

Research on the Relationship between Movement and Volition of Soldier's Service Using Causal Loop (인과지도 분석을 통한 이주가 직업군인의 복무의지에 미치는 영향에 관한 연구)

  • Ko, Seong-Pil;Lee, Jeong-Dong;Choi, Jeong-Hwan;Jung, Euy-Young
    • Korean System Dynamics Review
    • /
    • v.14 no.1
    • /
    • pp.69-87
    • /
    • 2013
  • The purpose of this paper is to explore the relationship between the number of relocation and volition of soldier's service based on system thinking perspective using a causal loop analysis. Research adopting system dynamics concerning on the volition of soldier's service and relocation has not been studied yet. Causal loops are analyzed and evaluated by focusing on soldier's military performance, stress of family members and family members' welfare service. Result of this study is that soldier's periodical movement is indispensable factor maintaining military life. Most of the married soldier's life conditions are worse than ordinary people. As the number of relocation is increasing family of soldier's stress is increased by anxiety for welfare conditions is supposed to relocate. The number of movement to another place of soldier's children is more than two times and the result of learning achievement is worse than ordinary students. This kind of stress can influence the married soldier's military performance and stress. So the welfare service should be expanded to an official residence, education, facility, district network service and so on.

  • PDF

Effects of vessel-pipe coupled dynamics on the discharged CO2 behavior for CO2 sequestration

  • Bakti, Farid P.;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.317-332
    • /
    • 2020
  • This study examines the behaviors and properties of discharged liquid CO2 from a long elastic pipe moving with a vessel for the oceanic CO2 sequestration by considering pipe dynamics and vessel motions. The coupled vessel-pipe dynamic analysis for a typical configuration is done in the frequency and time domain using the ORCAFLEX program. The system's characteristics, such as vessel RAOs and pipe-axial-velocity transfer function, are identified by applying a broadband white noise wave spectrum to the vessel-pipe dynamic system. The frequency shift of the vessel's RAO due to the encounter-frequency effect is also investigated through the system identification method. Additionally, the time histories of the tip-of-pipe velocities, along with the corresponding discharged droplet size and Weber numbers, are generated for two different sea states. The comparison between the stiff non-oscillating pipe with the flexible oscillating pipe shows the effect of the vessel and pipe dynamics to the discharged CO2 droplet size and Weber number. The pipe's axial-mode resonance is the leading cause of the fluctuation of the discharged CO2 properties. The significant variation of the discharged CO2 properties observed in this study shows the importance of considering the vessel-pipe motions when designing oceanic CO2 sequestration strategy, including suitable sequestration locations, discharge rate, towing speed, and sea states.

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.

Viscoelastic behavior of aqueous surfactant micellar solutions

  • Toshiyuki Shikata;Mamoru Shiokawa;Shyuji Itatani;Imai, Shin-ichiro
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.129-138
    • /
    • 2002
  • A cationic surfactant, cetyltrimethylammonium $\rho$-toluenesufonate (CTA$\rho$TS), forms long threadlike micelles in aqueous solution. The threadlike micelles make concentrated entanglement networks, so that the solution shows pronounced viscoelastic behavior as concentrated polymer systems do. However, a mechanism for a process responsible for the longest relaxation time of the threadlike micellar system is different from that of semi-dilute to concentrated polymer systems. The threadlike micellar system exhibits unique viscoelasticity described by a Maxwell model. The longest relaxation time of the threadlike micellar system is not a function of the concentration of CTA$\rho$TS, but changes with that of $\rho$-toluenesufonate ($\rho$$TS^{-}$) ions in the bulk aqueous phase supplied by adding sodium $\rho$-toluenesulfonate (NapTS). The rates of molecular motions in the threadlike micelles are not influenced by the concentration of $\rho$$TS^{-}$ anions, therefore, molecular motions in the threadlike micelles (micro-dynamics) are independent of the longest relaxation mechanism (macro-dynamics). A nonionic surfactant, oleyldimethylamineoxide (ODAO), forms long threadlike micelles in aqueous solution without any additives. The aqueous threadlike micellar system of ODAO also shows Maxwell type viscoelastic behavior. However, the relaxation mechanism for the longest relaxation process in the system should be different from that in the threadlike micellar systems of CTA$\rho$TS, since the system of ODAO does not contain additive anions. Because increase in the average degree of protonation of head groups of ODAO molecules in micelles due to adding hydrogen bromide causes the relaxation time remarkably longer, changes in micro-structure and micro-dynamics in the threadlike micelle are closely related to macro-dynamics in contrast with the threadlike micellar system of CTA$\rho$TS.

Network Neutrality in the Digital Convergence Era : a System Dynamics Model with Two-Sided Market Framework (디지털 컨버전스 환경에서 양면시장 플랫폼으로서의 인터넷망 중립성에 관한 동태적 분석)

  • Kim, Do-Hoon
    • Journal of Information Technology Services
    • /
    • v.10 no.2
    • /
    • pp.75-94
    • /
    • 2011
  • The industrial ecosystem around the Internet services has been evolving since the Internet was first introduced. The Net Neutrality issue best represents the process of the evolution and presents an inevitable challenge that the industry should overcome. This paper deals with this structural change with the Two-Sided Market framework and provides a System Dynamics(SD) model to evaluate the economic implications of the net neutrality policy. In particular, our approach analyzes the policy impacts when two competing platforms (network providers) play a role of the platform in a typical two-sided market, which connects Content Providers(CPs) with users. Previous studies show that the indirect network externality between these two markets makes the entire system tip to one platform. When the multi-homing in the CP market is allowed as in our model, however, their argument may lose its validity. To examine the system behavior, conducted here is SD simulations of our model. The simulation results show that co-existence of the competing platforms persists with the network effects over a certain threshold. The net neutrality policy seems to lower the threshold based on our experimental outcomes.

Weapon Systems for the implementation of an effective Modeling & Simulation on the use of computational fluid dynamics research (무기체계의 효과적인 모델링 및 시뮬레이션 구현을 위한 전산유체역학 활용 연구)

  • Lee, Pil-Jung;Lee, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3492-3496
    • /
    • 2011
  • In Korea Defence in the field of modeling and simulation quite low compared to international levels, and Research & Development and acquisition of weapon systems do not address the reliability in the area is a Free. Thus, in this study using computational fluid dynamics engineering in terms of M & S and the applicability of the present, Future research and development of an effective weapons system acquisition would like to take advantage.