• Title/Summary/Keyword: and sodium sulfate

Search Result 1,263, Processing Time 0.031 seconds

Curing Action of Antibiotic Resistant Factor in Bacillus Subtilis (Bacillus subtilis의 항생물질 내성에 대한 Curing작용)

  • Hong, Yong-Ki;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.2
    • /
    • pp.103-107
    • /
    • 1985
  • A variety of plasmid curing agents such as sodium dodecyl sulfate, acriflavine, ethidium bromide, and mitomycin-C were used to cure Bacillus subtilis cells of streptomycin resistant factor. The drug susceptibility was increased by 0.1% sodim dodecyl sulfate at stationary growth phase. The curing frequency was obtained highly at 4 $\mu\textrm{g}$/$m\ell$ of acriflavine, 10 $\mu\textrm{g}$/$m\ell$ of ethidium bromide, and 200 $\mu\textrm{g}$/$m\ell$ of mitomycin-C. respectively. Curing action occurred competitively for the streptomycin and terramycin resistant factors in B. subtilis.

  • PDF

Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete (콘크리트의 황산 및 황산염 침투 저항성에 미치는 광물질 혼화재의 영향)

  • Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2010
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer, sewage and wastewater, soil, groundwater, and seawater etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to concrete matrix by forming expansive hydration products due to the reaction between portland cement hydration products and acid and sulfate ions. Objectives of this experimental research are to investigate the effect of mineral admixtures on the resistance to acid and sulfate attack in concrete and to suggest high-resistance concrete mix against acid and sulfate attack. For this purpose, concretes specimens with three types of cement (ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC) composed of different types and proportions of admixtures) were prepared at water-biner ratios of 32% and 43%. The concrete specimens were immersed in fresh water, 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solutions for 28, 56, 91, 182, and 365 days, respectively. To evaluate the resistance to acid and sulfate for concrete specimens, visual appearance changes were observed and compressive strength ratios and mass change ratios were measured. It was observed from the test results that the resistance against sulfuric acid and sodium sulfate solutions of the concretes containing mineral admixtures were much better than that of OPC concrete, but in the case of magnesium sulfate solution the concretes containing mineral admixtures was less resistant than OPC concrete due to formation of magnesium silicate hydrate (M-S-H) which is non-cementitious.

Deterioration Mechanism of Cement Matrix Long-term Exposed to Sulfate Solution

  • Moon, Han-Young;Lee, Seung-Tae;Choi, Kang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.727-730
    • /
    • 2003
  • The objective of this work is to understand the deterioration mode of ordinary portland cement pastes and mortars immersed in 5% sodium sulfate solution for 510 days. In order to achieve the goal, x-ray diffraction (XRD) and scanning electron microscopy (SEM) are presented in this experimental work. Strength deterioration (SDF) and length change of the mortars were also measured to evaluate resistances to the attacking solution. The mortars were prepared by using water-cement ratio of 35%, 45% and 55%, respectively, and the water-cement ratio of pastes was fixed at 45%. Conclusively, the deterioration by sodium sulfate attack was primarily due to the formation of ettringite and thaumasite. This process of deterioration may submit the reasonable understanding on the sulfate attack mechanism of hardened cement pastes, mortars, and concretes.

  • PDF

Effect of Anionic Surfactants in Synthesizing Silicone Dioxide/Styrene Core-Shell Polymer (이산화규소/스티렌의 코어-셀 합성에서 음이온 계면활성제의 영향)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.404-409
    • /
    • 2008
  • The core-shell composite particles of inorganic/organic were polymerized by using styrene(St) as a shell monomer and potassium persulfate (KPS) as an initiator. We studied the effect of core-shell structure of silicone dioxide/styrene in the presence of an anionic surfactant sodium lauryl sulfate (SLS) and polyoxyethylene alky lether sulfate (EU-S133D). We found that when $SiO_2$ core/PSt shell polymerization was prepared on the surface $SiO_2$ particle, to minimize the coagulation during the shell polymerization, the optimum conditions were at concentration of $2.56{\times}10^{-2}mole/L$ SLS. The structure of core-shell polymer was confirmed by measuring the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of core-shell polymer particles by transmission electron microscope (TEM).

The Effect of Anionic Surfactants in Synthesizing Calcium Carbonate/Acrylate Core-Shell Polymer (탄산칼슘/아크릴계 유기물의 코어-셀 합성에서 음이온 계면활성제의 영향)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • The core-shell latex particles were prepared by sequential emulsion polymerization using alkyl methacrylate as a shell monomer and potassium persulfate (KPS) as an initiator. We study the effects of core-shell structure of calcium carbonate/alkyl methacrlyate in the presence of an anionic surfactant sodium lauryl sulfate (SLS) and polyoxyethylene alkyl ether sulfate (EU-S133D)). The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by transmission electron microscope (TEM).

Effect of the electrolyte composition and the plating condition on the hardness of zinc deposit in the sulfate bath (황산아연욕에서 도금층 경도에 미치는 욕조성 및 도금조건의 영향)

  • 김명수;김영근
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.356-364
    • /
    • 2000
  • Factors that affect the hardness of the zinc electrodeposits in the sulfate electrolyte were investigated. The hardness of zinc deposit was enhanced by increasing the concentration of impurities such as iron and nickel in the bath that changed the crystallographic orientation of the zinc deposit from the strong basal plane to the random orientation. The increase of the concentration of sodium sulfate and current density in iron contained bath improved the hardness of zinc deposit because those were easily codeposited in zinc layer. However the increase of the concentration of sodium sulfate up to 80g/$\ell$ in the bath darkened the surface of zinc electrodeposits due to change of morphology by the codeposition of iron.

  • PDF

Synthesis and properties of methylprednisolone-21sulfate sodiumas as a colon-specific prodrug of methylprednisolone

  • Kang, Hye-Sik;Kim, In-Ho;Kim, Young-Soo;Choi, Boh-Im;KIm, Hee-Jung;Kim, Young-Mi
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.177.3-177.3
    • /
    • 2003
  • Corticosteroids have been used most frequently for inflammatory bowel disease. To reduce side effects by the systemic absorption, colon-specific delivery is highly desirable. We expected that conversion of 21-hydroxyl in glucocorticoids into a sulfate ester sodium will greatly increase the hydrophilicity, which consequently restrict the gastrointestinal absorption. Once delivered to the colon, sulfate ester will be hydrolyzed by the sulfatase originated from microbes and release the parent compound, glucocorticoids. In this study, we prepared methylprednisolone 21-sulfate sodium (MPS) and investigated its suitability as a colon-specific prodrug on methylprednisolone (MP). (omitted)

  • PDF

A NMR Study on the Micellization of Sodium Dodecyl Sulfate in ω-Phenylalkylammonium Salt Solution (1H NMR을 이용한 ω-Phenylalkylammonium Salt의 수용액에서 Sodium Dodecyl Sulfate의 미셀에 관한 연구)

  • Oh, Jung Hee
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.628-634
    • /
    • 1999
  • The orientational binding of ${\omega}$-phenylakylammonium ions to the sodium dodecyl (SDS) micellar interface has been studied from $^{1}H\;NMR$ chemical shift data. The NMR resonaces of the methylene protons of SDS and aromatic protons embedded into the micellar interior have shown the upfield shift. The aromatic induced chemical shifts of the alkyl chain methylene protons of SDS demonstrate the deep penetration into the palisade layer by these organic salts. Alkylammonium groups have been considered to be oriented toward outside of the micellar interface. Aromatic rings have been thought to be oriented toward the micellar core. The depth of penetration by organic salts has been observed to increase with the length of alkyl chain.

  • PDF

Solubilization isotherms of MTBE in various surfactant solutions for application of micellar-enhanced ultrafiltration (MEUF)

  • 양지원;백기태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.103-106
    • /
    • 2002
  • Solubilization isotherms for methyl tort-butyl ether (MTBE) in sodium dodecyl sulfate(SDS), dowfax 8390, sodium dodecylbenzenesulfonate and cetylpyridinium chloride (CPC) were investigated for application to micellar enhanced remediation. Dowfax 8390 showed maximum extent of solubilization among surfactants tested in this study. It seems that sulfate group in anionic surfactants playes a important role in solublization of MTBE. Chemical shiftes in NMR of surfactant and MTBE supports this point.

  • PDF

Enhanced Electrogenerated Chemiluminescence of Tris (2,2'-bipyridyl) Ruthenium (II)-$S_2O_8^{2-}$ System by Sodium Dodecyl Sulfate

  • Kang, Sung-Chul;Oh, Soo-Il;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.505-508
    • /
    • 1990
  • The electrochemical reduction and electrogenerated chemiluminescence (ECL) of $Ru(bpy)_3^{2+}-S_2O_8^{2-}\;in\;CH_3CN-H_2O$ solution were studied in the presence of sodium dodecyl sulfate (SDS) as an anionic surfactant. SDS enhanced the ECL and the fluorescence intensities and lengthened the duration of ECL due to the solubilization of reactants and possibly to the stabilization of ECL intermediates in the SDS micellar environment.