• Title/Summary/Keyword: and quality assurance measurement system

Search Result 79, Processing Time 0.028 seconds

Quality Assurance Program of Electron Beams Using Thermoluminescence Dosimetry (열형광선량계를 이용한 전자선 품질보증 프로그램에 관한 연구)

  • Rah Jeong-Eun;Kim Gwe-Ya;Jeong Hee-Kyo;Shin Dong-Oh;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.62-69
    • /
    • 2005
  • The purpose of this study has been performed to investigate the possibility of external audit program using thermoluminescence dosimetry for electron beam in korea. The TLD system consists of LiF powder, type TLD-700 read with a PCL 3 reader. In order to determine a calibration coefficient of the TLD system, the reference dosimeters are irradiated to 2 Gy in a $^{60}CO$ beam at the KFDA The irradiation is performed under reference conditions is water phantom using the IAEA standard holder for TLD of electron beam. The energy correction factor is determined for LiF powder irradiated of dose to water 2 Gy in electron beams of 6, 9, 12, 16 and 20 MeV (Varian CL 2100C). The dose is determined according to the IAEA TRS-398 and by measurement with a PTW Roos type plane-parallel chamber. The TLD for each electron energy are positioned in water at reference depth. In this study, to verify of the accuracy of dose determination by the TLD system are performed through a 'blind' TLD irradiation. The results of blind test are $2.98\%,\;3.39\%\;and\;0.01\%(1\sigma)$ at 9, 16, 20 MeV, respectively. The value generally agrees within the acceptance level of $5\%$ for electron beam. The results of this study prove the possibility of the TLD quality assurance program for electron beams. It has contributed to the improvement of clinical electron dosimetry in radiotherapy centers.

  • PDF

Feasibility Study of the Real-Time IMRT Dosimetry Using a Scintillation Screen (고감도 형광판을 이용한 실시간 선량측정 가능성 연구)

  • Lim Sang Wook;Yi Byong Yong;Ko Young Eun;Ji Young Hoon;Kim Jong Hoon;Ahn Seung Do;Lee Sang Wook;Shin Seong Soo;Kwon Soo-Il;Choi Eun Kyoung
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.64-68
    • /
    • 2004
  • Purpose : To study the feasibility of verifying real-time 2-D dose distribution measurement system with the scintillation screen for the quality assurance. Materials and Methods : The water phantom consisted of a scintillation screen (LANEX fast screen, Kodak, USA) that was axially located in the middle of an acrylic cylinder with a diameter of 25 cm. The charge-coupled device (CCD) camera was attached to the phantom In order to capture the visible light from the scintillation screen. To observe the dose distribution In real time, the intensity of the light from the scintillator was converted to a dosage. The isodose contours of the calculations from RTP and those of the measurements using the scintillation screen were compared for the arc therapy and the Intensity modulated radiation therapy (IMRT). Results : The kernel, expressed as a multiplication of two error functions, was obtained in order to correct the sensitivity of the CCD of the camera and the scintillation screen. When comparing the calculated isodose and measured isodose, a discrepancy of less than 8 mm in the high dose region was observed. Conclusion : Using the 2-D dosimetry system, the relationship between the light and the dosage could be found, and real-time verification of the dose distribution was feasible.

Measurement of Image Quality According to the Time of Computed Radiography System (시간에 따르는 CR장비의 영상의 질평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Kim, Jung-Min;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Hwang, Sun-Kwang;Lee, Ik-Pyo;Kim, Ki-Won;Jung, Jae-Yong;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.365-374
    • /
    • 2015
  • The regular quality assurance (RQA) of X-ray images is essential for maintaining a high accuracy of diagnosis. This study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) of a computed radiography (CR) system for various periods of use from 2006 to 2015. We measured the pre-sampling MTF using the edge method and RQA 5 based on commission standard international electro-technical commission (IEC). The spatial frequencies corresponding to the 50% MTF for the CR systems in 2006, 2009, 2012 and 2015 were 1.54, 1.14, 1.12, and $1.38mm^{-1}$, respectively and the10% MTF for 2006, 2009, 2012, and 2015 were 2.68, 2.44, 2.44, and $2.46mm^{-1}$, respectively. In the NPS results, the CR systems showed the best noise distribution in 2006, and with the quality of distributions in the order of 2015, 2009, and 2012. At peak DQE and DQE at $1mm^{-1}$, the CR systems showed the best efficiency in 2006, and showed better efficiency in order of 2015, 2009, and 2012. Because the eraser lamp in the CR systems was replaced, the image quality in 2015 was superior to those in 2009 and 2012. This study can be incorporated into used in clinical QA requiring performance and evaluation of the performance of the CR systems.

Cancer Registration in India - Current Scenario and Future Perspectives

  • Chatterjee, Sharmila;Chattopadhyay, Amit;Senapati, Surendra Nath;Samanta, Dipti Rani;Elliott, Leslie;Loomis, Dana;Mery, Lesly;Panigrahi, Pinaki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3687-3696
    • /
    • 2016
  • Cancer registration, an important component of cancer surveillance, is essential to a unified, scientific and public health approach to cancer prevention and control. India has one of the highest cancer incidence and mortality rates in the world. A good surveillance system in the form of cancer registries is important for planning and evaluating cancer-control activities. Cancer registration in India was initiated in 1964 and expanded since 1982, through initiation of the National Cancer Registry Program (NCRP) by the Indian Council of Medical Research. NCRP currently has twenty-six population based registries and seven hospital based registries. Yet, Indian cancer registries, mostly in urban areas, cover less than 15% of the population. Other potential concerns about some Indian registries include accuracy and detail of information on cancer diagnosis, and timeliness in updating the registry databases. It is also important that necessary data collection related quality assurance measures be undertaken rigorously by the registries to ensure reliable and valid information availability. This paper reviews the current status of cancer registration in India and discusses some of the important pitfalls and issues related to cancer registration. Cancer registration in India should be complemented with a nationwide effort to foster systematic investigations of cancer patterns and trends by states, regions and sub populations and allow a continuous cycle of measurement, communication and action.

Feasibility Study of Patient Specific Quality Assurance Using Transit Dosimetry Based on Measurement with an Electronic Portal Imaging Device

  • Baek, Tae Seong;Chung, Eun Ji;Son, Jaeman;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.54-60
    • /
    • 2017
  • This study was designed to measure transit dose with an electronic portal imaging device (EPID) in eight patients treated with intensity modulated radiotherapy (IMRT), and to verify the accuracy of dose delivery to patients. The calculated dose map of the treatment planning system (TPS) was compared with the EPID based dose measured on the same plane with a gamma index method. The plan for each patient was verified prior to treatment with a diode array (MapCHECK) and portal dose image prediction (PDIP). To simulate possible patient positioning errors during treatment, outcomes were evaluated after an anthropomorphic phantom was displaced 5 and 10 mm in various directions. Based on 3%/3 mm criteria, the $mean{\pm}SD$ passing rates of MapCHECK, PDIP (pre-treatment QA) for 47 IMRT were $99.8{\pm}0.1%$, $99.0{\pm}0.7%$, and, respectively. Besides, passing rates using transit dosimetry was $90.0{\pm}1.5%$ for the same condition. Setup errors of 5 and 10 mm reduced the mean passing rates by 1.3% and 3.0% (inferior to superior), 2.2% and 4.3% (superior to inferior), 5.9% and 10.9% (left to right), and 8.9% and 16.3% (right to left), respectively. These findings suggest that the transit dose-based IMRT verification method using EPID, in which the transit dose from patients is compared with the dose map calculated from the TPS, may be useful in verifying various errors including setup and/or patient positioning error, inhomogeneity and target motions.

Software Development Effort Estimation Using Function Point (기능점수를 이용한 소프트웨어 개발노력 추정)

  • Lee, Sang-Un;Gang, Jeong-Ho;Park, Jung-Yang
    • The KIPS Transactions:PartD
    • /
    • v.9D no.4
    • /
    • pp.603-612
    • /
    • 2002
  • Area of software measurement in software engineering is active more than thirty years. There is a huge collection of researches but still no concrete software development effort and cost estimation model. If we want to measure the effort and cost of a software project, we need to estimate the size of the software. A number of software metrics are identified in the literature; the most frequently cited measures are LOC (line of code) and FPA (function point analysis). The FPA approach has features that overcome the major problems with using LOC as a measure of system size. This paper presents simple linear regression model that related software development effort to software size measured in FP. The model is derived from the plotting of the effort and FP relation. The experimental data are collected from 789 software development projects that were recently developed under the various development environments and development methods. Also, the model is compare with other regression analysis model. The presented model has the best estimation ability among the software effort estimation models.

Analysis of Image Factors of X-ray Films: Study for the Intelligent Replenishment System of Automatic Film Processor (자동현상기 지능화에 필요한 연산처리 기법의 개발을 위한 방사선 필름의 영상 지수의 분석)

  • Park, Sung-Tae;Yoon, Chong-Hyun;Park, Kwang-Bo;Auh, Yong-Ho;Lee, Hyoung-Jin;In, Kyung-Hwan;Kim, Keon-Chung
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • We analyzed image factors to determine the characteristic factors that need for intelligent replenishment system of the auto film processor. We processed the serial 300 sheets of radiographic films of chest phantom without replenishment of developing and fixation replenisher. We took the digital data by using film digitizer which scaned the films and automatically summed up the pixel values of the films. We analyzed characteristic curves, average gradients and relative speeds of individual film using densitometer and step densitometry. We also evaluated the pH of developer, fixer, and washer fluid with digital pH meter. Fixer residual rate and washing effect were measured by densitometer using the reagent methods. There was no significant reduction of the digital density numbers of the serial films without replenishment of developer and fixer. The average gradients were gradually decreased by 0.02 and relative speeds were also gradually decreased by 6.96% relative to initial standard step-densitometric measurement. The pHs of developer and fixer were reflected the inactivation of each fluid. The fixer residual rates and washing effects after processing each 25 sheets of films were in the normal range. We suggest that the digital data are not reliable due to limitation of the hardware and software of the film digitizer. We conclude that average gradient and relative speed which mean the film's contrast and sensitivity respectively are reliable factors for determining the need for the replenishment of the auto film processor. We need more study of simpler equations and programming for more intelligent replenishment system of the auto film processor.

  • PDF

A Study on Software Fault Analysis and Management Method using Defect Tracking System (결함 추적 시스템에 의한 소프트웨어 결함 분석 및 관리기법 연구)

  • Joon, Moon-Young;Yul, Rhew-Sung
    • The KIPS Transactions:PartD
    • /
    • v.15D no.3
    • /
    • pp.321-326
    • /
    • 2008
  • The software defects that are not found in the course of a project frequently appear during the conduct of the maintenance procedure after the complete development of the software. As the frequency of surfacing of defects during the maintenance procedure increases, the cost likewise increases, and the quality and customer reliability decreases. The defect rate will go down only if cause analysis and process improvement are constantly performed. This study embodies the defect tracking system (DTS) by considering the Pareto principle: that most defects are repetitions of defects that have previously occurred. Based on the records of previously occurring defects found during the conduct of a maintenance procedure, DTS tracks the causes of the software defects and provides the developer, operator, and maintenance engineer with the basic data for the improvement of the software concerned so that the defect will no longer be manifested or repeated. The basic function of DTS is to analyze the defect type, provide the measurement index for it, and aggregate the program defect type. Doing these will pave the way for the full correction of all the defects of a software as it will enable the defect correction team to check the measured defect type. When DTS was applied in the software configuration management system of the W company, around 65% of all its software defects were corrected.

Dose Verification Using Pelvic Phantom in High Dose Rate (HDR) Brachytherapy (자궁경부암용 팬톰을 이용한 HDR (High dose rate) 근접치료의 선량 평가)

  • 장지나;허순녕;김회남;윤세철;최보영;이형구;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • High dose rate (HDR) brachytherapy for treating a cervix carcinoma has become popular, because it eliminates many of the problems associated with conventional brachytherapy. In order to improve the clinical effectiveness with HDR brachytherapy, a dose calculation algorithm, optimization procedures, and image registrations need to be verified by comparing the dose distributions from a planning computer and those from a phantom. In this study, the phantom was fabricated in order to verify the absolute doses and the relative dose distributions. The measured doses from the phantom were then compared with the treatment planning system for the dose verification. The phantom needs to be designed such that the dose distributions can be quantitatively evaluated by utilizing the dosimeters with a high spatial resolution. Therefore, the small size of the thermoluminescent dosimeter (TLD) chips with a dimension of <1/8"and film dosimetry with a spatial resolution of <1mm used to measure the radiation dosages in the phantom. The phantom called a pelvic phantom was made from water and the tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators were inserted into the grooves of the applicator holder. The dose distributions around the applicators, such as Point A and B, were measured by placing a series of TLD chips (TLD-to-TLD distance: 5mm) in the three TLD holders, and placing three verification films in the orthogonal planes. This study used a Nucletron Plato treatment planning system and a Microselectron Ir-192 source unit. The results showed good agreement between the treatment plan and measurement. The comparisons of the absolute dose showed agreement within $\pm$4.0 % of the dose at point A and B, and the bladder and rectum point. In addition, the relative dose distributions by film dosimetry and those calculated by the planning computer show good agreement. This pelvic phantom could be a useful to verify the dose calculation algorithm and the accuracy of the image localization algorithm in the high dose rate (HDR) planning computer. The dose verification with film dosimetry and TLD as quality assurance (QA) tools are currently being undertaken in the Catholic University, Seoul, Korea.

  • PDF

A Study on Mice Exposure Dose for Low-dose Gamma-irradiation Using Glass Dosimeter (유리선량계를 이용한 저선량 방사선의 마우스 피폭선량 연구)

  • Noh, Sung Jin;Kim, Hyo Jin;Kim, Hyun;Jeong, Dong Hyeok;Son, Tae Gen;Kim, Jung Ki;Yang, Kwangmo;Nam, Sang-Hee;Kang, Yeong-Rok
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.202-210
    • /
    • 2015
  • The low dose radiation is done for a long period, thus researchers have to know the exact dose distribution for the irradiated mouse. This research has been conducted in order to find out methods in transmitting an exact dose to mouse in a mouse irradiation experiment carried out using $^{137}Cs$ irradiation equipment installed in the DIRAMS (Dongnam Institution of Radiological & Medical Sciences) research center. We developed a single mouse housing cage and shelf with adjustable geometric factors such as distance and angle from collimator. The measurement of irradiated dose showed a maximal 42% difference of absorbed dose from the desired dose in the conventional irradiation system, whereas only 6% difference of the absorbed dose was measured in the self-developed mouse apartment system. In addition, multi mice housing showed much difference of the absorbed dose in between head and body, compared to single mouse housing in the conventional irradiation system. This research may allow further research about biological effect assessment for the low dose irradiation using the self-developed mouse apartment to provide more exact doses which it tries to transmit, and to have more reliability for the biological analysis results.