• 제목/요약/키워드: and power conversion efficiency

검색결과 1,145건 처리시간 0.022초

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF

메조포러스 이산화티타늄 박막 기반 양자점-감응 태양전지 (Quantum Dot-Sensitized Solar Cells Based on Mesoporous TiO2 Thin Films)

  • 이효중
    • 전기화학회지
    • /
    • 제18권1호
    • /
    • pp.38-44
    • /
    • 2015
  • 본 총설은 다공성의 메조포러스 이산화티타늄 박막을 기반으로 하는 양자점-감응 태양 전지의 최근 발전 과정에 대해 정리하였다. 나노스케일의 무기물 양자점이 가지는 본질적 특성에 기반하고 다양한 양자점 구성 물질을 이용하여, 용액-공정 기반의 다양한 3세대 박막 태양전지를 만들 수 있었다. 양자점 감응제는 준비하는 방법에 따라 크게 2가지로 나눌 수 있는데, 첫 번째는 콜로이드 형태로 용액상에서 준비한 다음 $TiO_2$ 표면에 붙이는 것이고 두 번째는 양자점 전구체가 녹아있는 화학조를 이용하여 직접 $TiO_2$ 표면에 성장시키는 것이다. 폴리썰파이드 전해질을 사용하여, 콜로이드 양자점 감응제의 경우는 최근 들어 정밀한 조성 조절을 통하여 전체 광전 변환효율이 ~7%에 이르렀고 화학조 침전법을 이용하여 준비된 대표적 감응제인 CdS/CdSe는 ~5%의 효율을 보이고 있다. 앞으로는 지금까지 보고된 양자점 감응제의 뛰어난 광전류 생성 능력을 유지하면서, 새로운 정공 전달체의 개발 및 계면 조절을 통한 개방 전압과 채움 상수의 개선을 통한 효율 증가 및 안정성에 관한 체계적 연구가 필요한 상황이다.

TiO2와 Graphene 혼합물을 전극으로 사용한 염료감응형 태양전지특성 연구 (Dye-Sensitized Solar Cell Based on TiO2-Graphene Composite Electrodes)

  • 바트무르;양우승;암바데;이수형
    • Korean Chemical Engineering Research
    • /
    • 제50권1호
    • /
    • pp.177-181
    • /
    • 2012
  • 본 연구에서는 $TiO_2$ 필름에 그라핀나노시트(graphenenanosheet, GNS)의 양을 다르게 함으로써 형성한 전극을 이용하여 염료감응형 태양전지를 제작하였고 그 특성을 연구하였다. $TiO_2$-GNS 혼합물 전극은 단순한 혼합방식에 의하여 제작되었으며, N3를 염료로 사용하여 태양전지의 효율을 평가하였다. $TiO_2$-GNS 혼합물 전극을 사용한 염료감응형 태양전지의 전환효율은 GNS의 양에 의해 영향을 받았으며, $TiO_2$에 GNS를 0.01 wt% 혼합한 전극을 사용하여 제작한 염료감응형 태양전지가 가장 높은 효율인 5.73%를 나타내었다. 이는 GNS를 혼합하지 않은 전극을 사용한 태양전지보다 26% 높은 효율이었다. 이와 같은 효율 증가의 원인으로는 GNS 첨가에 의한 N3의 흡착량 증가, 전자 재결합(electron recombination)과 back transport reaction의 감소, 전자 수송의 증가로부터 기인한 것으로 생각된다. 본 연구에서 $TiO_2$(anatase)와 GNS의 존재는 Field-Emission Scanning Electron Microscopy를 통하여 확인하였으며, 흡착된 염료의 양은 자외선분광기(UV-vis Spectroscopy), 전자 재결합의 감소 및 전자 수송에 대한 분석은 전기화학적 임피던스분광법(Electrochemical Impedance Spectroscopy)을 이용하였다.

인접한 조류발전용 수직축 터빈의 배치방식에 따른 성능 변화 (Study on Performance Variation According to the Arrangements of Adjacent Vertical-Axis Turbines for Tidal Current Energy Conversion)

  • 이정기;현범수
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제19권2호
    • /
    • pp.151-158
    • /
    • 2016
  • 조류발전단지는 유망한 해역에 터빈을 복수로 다배열하여 발전하는 시스템을 말한다. 이러한 단지는 각 터빈이 최대 효율로 작동하고, 최대 발전량을 얻을 수 있도록 설계되어야 하는데, 이를 위해서는 터빈 사이의 간섭으로 인한 성능 저하가 발생하지 않도록 터빈은 일정 거리를 두고 배치되어야 한다. 수평축 터빈의 경우 EMEC(European Marine Energy Centre)에서 배치거리를 제안하고 있으나, 수직축 터빈은 그러한 규정이 제안된 바 없다. 여러 연구 결과들에 따르면 수직축 터빈이 인접할 경우 성능의 향상까지 도모될 수 있으므로, 그 배치는 수평축 터빈보다 더욱 중요하게 검토될 필요가 있다. 본 논문에서는 수직축 터빈에 대하여 수평축 터빈과 같이 일정 거리를 두고 배치하는 것과 터빈을 인접하도록 배치하는 것과의 차이를 조사하였다. 이를 위해 두 터빈간의 거리와 회전방향을 파라메터로 하여 그에 따른 성능 차이를 수치해석적으로 연구하였고, 그 이유를 파악하고자 하였다. 본 연구를 통하여 가장 적절한 수치해석 영역과 조건을 설정할 수 있었으며, 인접한 두 터빈이 각각 반시계-시계방향으로 회전하는 것이 단독 터빈 2기 대비 약 9.2%의 성능향상이 예측되었다. 터빈이 대각으로 배치된 경우는 최대 약 5.6%정도 성능이 향상됨을 확인하였다. 본 연구는 수직축 터빈을 이용한 조류발전단지를 설계시 유용한 정보가 될 것으로 기대된다.

메탄올 내부개질형 용융탄산염 연료전지의 성능 (Performance of a Molten Carbonate Fuel Cell With Direct Internal Reforming of Methanol)

  • 하명주;윤성필;한종희;임태훈;김우식;남석우
    • 청정기술
    • /
    • 제26권4호
    • /
    • pp.329-335
    • /
    • 2020
  • 재생에너지로부터 수전해를 통하여 생산된 수소와 포집된 CO2를 활용하여 메탄올을 합성하는 power-to-methanol 기술이 재생에너지를 대용량으로 저장하는 방안으로 제시되고 있다. 본 연구에서는 메탄올을 수소 및 전력 생산에 활용함에 있어 더욱 효율적인 방법으로 연료전지 내부에서 메탄올 수증기개질 반응이 일어나는 내부개질형 용융탄산염 연료전지에 대해 성능 분석을 실시하였다. 용융탄산염 연료전지의 연료극으로 사용되는 다공성 Ni-10 wt%Cr을 촉매로 메탄올 수증기개질 반응을 수행한 결과 연료전지 운전 조건에서 연료극은 메탄올 수증기개질 반응에 충분한 활성을 나타내었다. 메탄올 수용액을 직접 용융탄산염 연료전지의 연료극으로 공급한 결과 연료전지의 성능은 외부 개질기를 통하여 생산된 개질가스를 공급하는 경우에 비해 다소 성능이 낮게 나타났으며, 메탄올 공급유량이 비교적 낮은 경우 고 전류밀도에서 불안정한 성능을 나타내었다. 연료극으로부터 생성된 가스를 재순환시킴으로써 연료전지의 성능을 향상시킬 수 있었으며, 메탄올 전환율도 90% 이상 얻을 수 있었다. 물질수지를 통하여 연료극에서 일어나는 반응을 분석한 결과 전류밀도 및 가스 재순환 유량이 증가함에 따라 메탄올 수증기개질 반응속도가 증가함을 확인하였다. 이상의 결과로부터 별도의 촉매층을 설치할 필요 없이 연료극 만으로도 용융탄산염 연료전지 내에서 메탄올 수증기개질 반응이 가능하며, 메탄올 내부개질형 용융탄산염 연료전지를 통하여 전력과 합성가스를 동시에 생산할 수 있음을 확인하였다.