• 제목/요약/키워드: and neural network estimator.

검색결과 114건 처리시간 0.022초

Precision Position Control of PMSM using Neural Observer and Parameter Compensator

  • Ko, Jong-Sun;Seo, Young-Ger;Kim, Hyun-Sik
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.354-362
    • /
    • 2008
  • This paper presents neural load torque compensation method which is composed of a deadbeat load torque observer and gains compensation by a parameter estimator. As a result, the response of the PMSM (permanent magnet synchronous motor) obtains better precision position control. To reduce the noise effect, the post-filter is implemented by a MA (moving average) process. The parameter compensator with an RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural load torque observer to resolve problems. The neural network is trained in online phases and it is composed by a feed forward recall and error back-propagation training. During normal operation, the input-output response is sampled and the weighting value is trained multi-times by the error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against load torque and parameter variation. Stability and usefulness are verified by computer simulation and experiment.

신경망을 이용한 유도 전동기의 센서리스 속도제어 (Speed-Sensorless Vector Control of an Induction Motor Using Neural Network)

  • 김정곤;박성욱;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2149-2151
    • /
    • 2002
  • In this paper, a novel speed estimation method of an induction motor using neural networks(NNs) is presented. The NN speed estimator is trained online by using the error backpropagation algorithm, and the training starts simultaneously with the induction motor working. The neural network based vector controller has the advantage of robustness against machine parameter variation. The simulation results using Matlab/Simulink verify the useful of the proposed method.

  • PDF

ANN에 의한 IPMSM의 센서리스 속도제어 (Sensorless Speed Control of IPMSM Drive with ANN-based)

  • 이홍균;이정철;정동화
    • 전기학회논문지P
    • /
    • 제52권4호
    • /
    • pp.154-160
    • /
    • 2003
  • This paper is proposed a ANN-based rotor position and speed estimation method for IPMSM by measuring the currents. Because the proposed estimator treats the estimated motor speed as the weights, it is possible to estimate motor speed to adapt back propagation algorithm with 2 layered neural network. The proposed control algorithm is applied to IPMSM drive system. The operating characteristics controlled by neural networks are examined in detail.

인공신경회로망에 의한 유도전동기의 회전자 저항 추정 (Rotor Resistance Estimation of Induction Motor by Artificial Neural-Network)

  • 김길봉;최정식;고재섭;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.50-52
    • /
    • 2006
  • This paper Proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.

  • PDF

신경회로망을 이용한 센서 고장진단 및 극복 (Sensor Failure Detection and Accommodation Based on Neural Networks)

  • 이균정;이봉기
    • 한국군사과학기술학회지
    • /
    • 제1권1호
    • /
    • pp.82-91
    • /
    • 1998
  • 본 논문에서는 실제 물리적인 여유 센서를 가지지 않는 수중운동체의 센서 고장진단 및 극복에 관한 문제를 신경회로망을 사용하여 접근하였다. 이를 위하여 설계된 신경회로망은 센서 고장 진단을 위한 신경회로망과 고장 확인 및 대체정보 생성을 위한 신경회로망으로 구성하였으며, 온라인(on-line) 학습을 위하여 확장 역전(Extended Back-Propagation) 학습법을 사용하였다. 시뮬레이션은 수중운동체의 방위변화율 센서에 대하여 수행하였으며, 제안된 기법이 센서에 대한 고장진단기와 센서 추정기로 사용할 수 있음을 확인하였다.

  • PDF

Self-organizing neuro-tracking of non-stationary manufacturing processes

  • Wang, Gi-Nam;Go, Young-Cheol
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.403-413
    • /
    • 1996
  • Two-phase self-organizing neuro-modeling (SONM). the global SONM and local SONM, is designed for tracking non-stationary manufacturing processes. Radial basis function (RBF) neural network is employed, and self-tuning estimator is also developed for the determination of RBF network parameters on-line. A pattern recognition approach is presented for identifying a correct RBF neural network, which is used for identifying current manufacturing processes. Experimental results showed that the proposed approach is suitable for tracking non-stationary processes.

  • PDF

Software Effort Estimation in Rapidly Changing Computng Environment

  • Eung S. Jun;Lee, Jae K.
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.133-141
    • /
    • 2001
  • Since the computing environment changes very rapidly, the estimation of software effort is very difficult because it is not easy to collect a sufficient number of relevant cases from the historical data. If we pinpoint the cases, the number of cases becomes too small. However is we adopt too many cases, the relevance declines. So in this paper we attempt to balance the number of cases and relevance. Since many researches on software effort estimation showed that the neural network models perform at least as well as the other approaches, so we selected the neural network model as the basic estimator. We propose a search method that finds the right level of relevant cases for the neural network model. For the selected case set. eliminating the qualitative input factors with the same values can reduce the scale of the neural network model. Since there exists a multitude of combinations of case sets, we need to search for the optimal reduced neural network model and corresponding case, set. To find the quasi-optimal model from the hierarchy of reduced neural network models, we adopted the beam search technique and devised the Case-Set Selection Algorithm. This algorithm can be adopted in the case-adaptive software effort estimation systems.

  • PDF

Modeling and Experimental Verification of ANN Based Online Stator Resistance Estimation in DTC-IM Drive

  • Reza, C.M.F.S.;Islam, Didarul;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.550-558
    • /
    • 2014
  • Direct Torque controlled induction motor (DTC-IM) drives use stator resistance of the motor for stator flux estimation. So, stator resistance estimation properly is very important for a stable and effective operation of the induction motor. Stator resistance variations because of changing in temperature make DTC operation difficult mainly at low speed. A method based on artificial neural network (ANN) to estimate the stator resistance online of IM for DTC drive is modeled and verified in this paper. To train the neural network a back propagation algorithm is used. Weight adjustment of neural network is done by back propagating the error signal between measured and estimated stator current. An extensive simulation has been carried out in MATLAB/SIMULINK to prove the efficacy of the proposed stator resistance estimator. The simulation & experimental result reveals that proposed method is able to obtain precise torque and flux control at low speed.

Speech Processing System Using a Noise Reduction Neural Network Based on FFT Spectrums

  • Choi, Jae-Seung
    • Journal of information and communication convergence engineering
    • /
    • 제10권2호
    • /
    • pp.162-167
    • /
    • 2012
  • This paper proposes a speech processing system based on a model of the human auditory system and a noise reduction neural network with fast Fourier transform (FFT) amplitude and phase spectrums for noise reduction under background noise environments. The proposed system reduces noise signals by using the proposed neural network based on FFT amplitude spectrums and phase spectrums, then implements auditory processing frame by frame after detecting voiced and transitional sections for each frame. The results of the proposed system are compared with the results of a conventional spectral subtraction method and minimum mean-square error log-spectral amplitude estimator at different noise levels. The effectiveness of the proposed system is experimentally confirmed based on measuring the signal-to-noise ratio (SNR). In this experiment, the maximal improvement in the output SNR values with the proposed method is approximately 11.5 dB better for car noise, and 11.0 dB better for street noise, when compared with a conventional spectral subtraction method.