• Title/Summary/Keyword: and microwave irradiation

Search Result 252, Processing Time 0.022 seconds

Dispersion Effect Based on Irradiation Dose and Position of QRD Microwave in Sealed Chamber (밀폐된 챔버의 QRD 마이크로파 조사용량과 위치에 따른 분산효과)

  • Kim, Jin Hyun;Han, Chung Su;Lee, Keun Woo;Lim, Kyoung Ho;Lee, Jae Hyun;Kim, Kyung Min;Ha, Yu Shin
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • This study analyzed the efficiency and uniformity by measuring the temperature change depending on the position in the chamber with the use of QRD (quadratic residue diffusor) microwave capable of inducing even sterilization by changing wavelength phase difference and enhancing the effect on low power. The results are summarized as follows: When irradiating 7 kW of QRD microwave, the highest efficiency was obtained at 35 cm height and in the center of the chamber. When irradiating 5 kW of QRD microwave, high efficiency was obtained on the sides of the chamber. When irradiating 3 kW of QRD microwave to Magnetrons 1, 2 and 3, the temperature uniformity according to the position of the bars was similar in the position of Bar 1 and 2. When irradiating 3 kW of QRD microwave to Magnetrons 3, 4 and 5, the temperature increased by approximately 10 to 20% in Bar 3. When irradiating 5, 7 and 9 kW of magnetron, the average temperature during the irradiation time increased in a similar form independently of the position of the bars. On the other hand, the efficiency of the chamber's proper internal volume was not necessarily proportional to the irradiation dose. When irradiating 3 kW of magnetron for 60 120 and 180 seconds, the temperature increased by approximately 5 to 10 at the edge of the chamber according to the irradiation position of magnetron. The temperature distribution for each position in the horizontal plane was relatively uniform, and the temperature had a tendency to slightly increase at the edge. When irradiating 5, 7 and 9 kW of magnetron, the temperature relatively evenly increased independently of the position of the bars. It was thought necessary to increase the irradiation dose by approximately 10 to 20% by considering the difference in temperature rise according to the position of magnetron.

A Facile Solvent and Catalyst Free Synthesis of New Dihydro Pyrimidinones as Antimicrobial Agents

  • Hegde, Hemant;Ahn, Chuljin;Gaonkar, Santosh L.;Shetty, Nitinkumar S.
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.435-439
    • /
    • 2019
  • An efficient one pot multicomponent synthesis of pyrimidinone derivatives of Biginelli type is described. 4-amino-6-aryl-pyrimidine-5-carbonitrile molecules were synthesized efficiently via three-component Biginelli-type condensation of aldehyde, malononitrile, and semicarbazone as urea substituent in the presence of a catalytic amount of PEG-400 as green medium under microwave irradiation. The reactions proceeded efficiently in the presence of microwave radiation to afford the desired products in good to excellent yields. Products have been confirmed by IR, and NMR spectral analysis. All the molecules were tested for their antimicrobial activity against E. coli, S. aureus, P. aeruginosa and C. tropicalis. Some of the compounds have shown moderate to good inhibition efficiency against both gram-positive and gram-negative bacteria. The potent activity was observed against the fungal species with minimum inhibition concentration 12.5 ㎍/mL.

Easy Preparation of Nanosilver-Decorated Graphene Using Silver Carbamate by Microwave Irradiation and Their Properties

  • Yun, Sang-Woo;Cha, Jae-Ryung;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2251-2256
    • /
    • 2014
  • We have successfully decorated reduced graphene oxide (RGO) with silver nanoparticles (AgNPs) by microwaving silver alkylcarbamate for 13 seconds using 1-amino-4-methylpiperazine. Uniform AgNPs (20-40 nm) were effectively prepared, and 1-amino-4-methylpiperazine acted as a reaction medium, reducing agent, and stabilizer. Particle size and morphology were correlated with the silver alkylcarbamate concentration and microwave time. The graphene/AgNPs composites were characterized by Raman, X-ray diffraction, and scanning electron microscopy to confirm that the AgNPs were uniformly decorated onto the graphene. Measurements of the transparent conductive property at room temperature indicated that these graphene/AgNPs nanosheets with 55.45% transmittance were electrically continuous with a sheet resistance of approximately $43{\Omega}/{\Box}$.

Highly Efficient Microwave-assisted Aminolysis of Epoxides in Water

  • Zuo, Hua;Li, Zhu-Bo;Zhao, Bao-Xiang;Miao, Jun-Ying;Meng, Li-Juan;Jang, Ki-Wan;Ahn, Chul-Jin;Lee, Dong-Ha;Shin, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2965-2969
    • /
    • 2011
  • Highly efficient and rapid aminolysis of epoxides with various amines in water under microwave irradiation in the absence of catalyst was developed. Chiral ${\beta}$-amino alcohols were formed in a short time with excellent yields.

Application of Microwave Activation Techniques to the N-Alkenyl Protection of Lactams

  • Kim, Ki-Won;Ahn, Hee-Sook;Lee, Ho-Joon;Song, Suk-Jin;Kim, Chung-Gi;Kwon, Tae-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.286-290
    • /
    • 2006
  • Rapid and facile syntheses of N-alkenyl lactam series via condensation between lactams and a variety of aldehydes such as n-propanal, isobutanal, n-butanal, n-hexanal, n-octanal and phenylacetaldehyde were studied under microwave or conventional heating. Various solid catalysts and solvents were examined to maximize the yields of condensation reactions.

A Simple, Efficient, Catalyst-Free and Solvent-Less Microwave-Assisted Process for N-Cbz Protection of Several Amines

  • Aouf, Zineb;Mansouri, Rachida;Lakrout, Salah;Berredjem, Malika;Aouf, Nour-Eddine
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.151-156
    • /
    • 2017
  • A simple, green and chemo-selective method for the N-benzyloxycarbonylation of amines, ${\beta}$-amino alcohols, ${\alpha}$-amino esters and sulfonamides has been developed under microwave irradiation. Good to excellent yields of the N-benzyloxycarbamates compounds were obtained in short times without any side products.

Base Catalysed Pyrimidine Synthesis Using Microwave

  • Kidwai, M.;Rastogi, S.;Saxena, S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1575-1578
    • /
    • 2003
  • An environmentally benign approach for the synthesis of 2-substituted-4,6-diaryl pyrimidines using inorganic solid supports for its catalytic role as well as an energy transfer medium is described. The methodology eliminates the usage of solvent during the reaction. The reaction time is brought down from hours to minutes along with yield enhancement. The rate enhancement and high yield is attributed to the coupling of solvent free conditions with microwaves. Further, the role of base is studied in the reaction and it is concluded that microwave assisted basic alumina catalysed reaction is the best in terms of catalysis as well as reaction time and yield.

The Characteristics of Sour Gas Decomposition by Microwave (Microwave에 의한 산성가스 분해 특성)

  • Kim, Dong-Sik;Kim, Jae-Surl;Lee, Dong-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1027-1033
    • /
    • 1996
  • Under the Irradiation of the radiofrequency wave, the dipole materials vibrate as microwavic phase change. This causes friction between adjacent molecules and enables an unique charateristics of interior heating of the materials. When dipole gases are adsorbed inside of a solid radiofrequency wave absorber, the gases can be decomposed easily by the microwave energy. The decomposition of sour gases was successfully tested in this manner to develop a sour gas removal process from the combustion flue gas. The standard gas bearing NO and $SO_2$ was passed through and microwave was applied on the calcined char bed as the wave absorber and the gas adsorbent. It was found that more then 95% of NO and 70 % of $SO_2$ was decomposed to the environmentally clean elements during the passage through the 20 gram char bed under the microwave impingement. The surface area and the porosity of char increased because the oxygen radicals produced from decomposed gas attacked carbon in the char capillaries and formed $CO_2$. For a lower concentration of sour gas, general cases in the commercial combustion processes, almost complete decomposion is believed possible and this method is surely expected to be useful for the prevention of air pollutions.

  • PDF

Production of Methyl Ester from Coconut Oil using Microwave: Kinetic of Transesterification Reaction using Heterogeneous CaO Catalyst

  • Mahfud, Mahfud;Suryanto, Andi;Qadariyah, Lailatul;Suprapto, Suprapto;Kusuma, Heri Septya
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.275-280
    • /
    • 2018
  • Methyl ester derived from coconut oil is very interesting to study since it contains free-fatty acid with chemical structure of medium carbon chain ($C_{12}-C_{14}$), so the methyl ester obtained from its part can be a biodiesel and another partially into biokerosene. The use of heterogeneous catalysts in the production of methyl ester requires severe conditions (high pressure and high temperature), while at low temperature and atmospheric conditions, yield of methyl ester is relatively very low. By using microwave irradiation trans-esterification reaction with heterogeneous catalysts, it is expected to be much faster and can give higher yields. Therefore, we studied the production of methyl ester from coconut oil using CaO catalyst assisted by microwave. Our aim was to find a kinetic model of methyl ester production through a transesterification process from coconut oil assisted by microwave using heterogeneous CaO catalyst. The experimental apparatus consisted of a batch reactor placed in a microwave oven equipped with a condenser, stirrer and temperature controllers. Batch process was conducted at atmospheric pressure with a variation of CaO catalyst concentration (0.5; 1.0; 1.5; 2.0, 2.5%) and microwave power (100, 264 and 400 W). In general, the production process of methyl esters by heterogeneous catalyst will obtain three layers, wherein the first layer is the product of methyl ester, the second layer is glycerol and the third layer is the catalyst. The experimental results show that the yield of methyl ester increases along with the increase of microwave power, catalyst concentration and reaction time. Kinetic model of methyl ester production can be represented by the following equation: $-r_{TG}=1.7{\cdot}10^6{_e}{\frac{-43.86}{RT}}C_{TG}$.