• Title/Summary/Keyword: and jittering-based model

Search Result 4, Processing Time 0.019 seconds

A Jittering-based Neural Network Ensemble Approach for Regionalized Low-flow Frequency Analysis

  • Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.382-382
    • /
    • 2020
  • 과거 많은 연구에서 다수의 모형의 결과를 이용한 앙상블 방법론은 인공지능 모형 (artificial neural network)의 예측 능력에 향상을 갖고 온다 논하였다. 본 연구에서는 미계측유역의 저수량(low flow)의 예측을 위하여 Jittering을 기반으로 한 인공지능 모형을 제시하고자 한다. 기본적인 방법론은 설명변수들에게 백색 잡음(white noise)를 삽입하여 훈련되는 자료를 증가시키는 것이다. Jittering을 기반으로 한 인공지능 모형에 대한 효과를 검증하기 위하여 본 연구에서는 Multi-output neural network model을 기반으로 모형을 구축하였다. 다음으로 Jittering을 기반으로 한 앙상블 모형을 variable importance measuring algorithm과 결합시켜서 유역특성치와 예측되는 저수량의 특성치들의 관계를 추론하였다. 본 연구에서 사용되는 방법론들의 효용성을 평가하기 위해서 미동북부에 위치하고 있는 총 207개의 유역을 사용하였다. 결과적으로 본 연구에서 제시한 Jittering을 기반으로 한 인공지능 앙상블 모형은 단일예측모형 (single modeling approach)을 정확도 측면에서 우수한 것으로 확인되었다. 또한, 적은 숫자의 앙상블 모형에서도 그 정확성이 단일예측모형보다 우수한 것을 확인하였다. 마지막으로 본 연구에서는 유역특성치들의 효과가 살펴보고자 하는 저수량의 특성치들에 따라서 일관적으로 영향을 미치거나 그 중요도가 변화하는 것을 확인하였다.

  • PDF

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.55-67
    • /
    • 2022
  • Sensor data can provide fault diagnosis for equipment. However, the cause analysis for fault results of equipment is not often provided. In this study, we propose an explainable convolutional neural network framework for the sensor-based time series classification model. We used sensor-based time series dataset, acquired from vehicles equipped with sensors, and the Wafer dataset, acquired from manufacturing process. Moreover, we used Cycle Signal dataset, acquired from real world mechanical equipment, and for Data augmentation methods, scaling and jittering were used to train our deep learning models. In addition, our proposed classification models are convolutional neural network based models, FCN, 1D-CNN, and ResNet, to compare evaluations for each model. Our experimental results show that the ResNet provides promising results in the context of time series classification with accuracy and F1 Score reaching 95%, improved by 3% compared to the previous study. Furthermore, we propose XAI methods, Class Activation Map and Layer Visualization, to interpret the experiment result. XAI methods can visualize the time series interval that shows important factors for sensor data classification.

Color-based Stippling for Non-Photorealistic Rendering (비사실적 렌더링 (NPR)을 위한 컬러기반 점묘화 기법)

  • Jang Seok;Hong Hyun-Ki
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.128-136
    • /
    • 2006
  • The stippling techniques, which represent objects with numerous points using pen and ink. The previous stippling techniques for Non-Photorsealistc Rendering(NPR) use single-colored points to represent the tone of gray image ur the material of surface. This paper presents a new stippling technique with various colored points based on the analysis of color information. By using the color information of the input image on HSV model, we define the color weight function that allows to determine automatically the number and size of points. The color jittering based on Munsell's color model can generate stippling drawings using various colored points to represent the image. Our color stippling method is expected to be used in many areas such as animation, digital art, video processing and CG tool.

Modeling for Efficient QoS support in wireless Networks (무선 네트웍에서의 효율적인 QoS제공을 위한 모델링)

  • 이성협;염익준
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.249-252
    • /
    • 2001
  • This paper focuses on the consideration of not only QoS parameters in wired network, but also QoS parameters in wireless network that supported for the Efficient QoS in the Al1 Service Levels. So, We supposed the "Efficient QoS Model" that guaranteed the QoS parameters "Loss Profile" , "Service Degradation" , "Latency and Jittering" , "Mobility of Mobile User" , "Probability of seamless communication" in wired-wireless networks. And the Method of Efficient QoS support that we supposed consists of "Multicast Routing-RSVP Protocol architecture based on Mobile IP" and "Protocols internetworking model ".

  • PDF