• Title/Summary/Keyword: and Zea mays

Search Result 339, Processing Time 0.027 seconds

Bacterial and Fungal Communities in Bulk Soil and Rhizospheres of Aluminum-Tolerant and Aluminum-Sensitive Maize (Zea mays L.) Lines Cultivated in Unlimed and Limed Cerrado Soil

  • Mota, Da;Faria, Fabio;Gomes, Eliane Aparecida;Marriel, Ivanildo Evodio;Paiva, Edilson;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.805-814
    • /
    • 2008
  • Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the impact of liming on the structures of bacterial and fungal communities in Cerrado soil, nor if there are differences between the microbial communities from the rhizospheres of Al-tolerant and Al-sensitive maize lines. This study evaluated the effects of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of Al-sensitive and Al-tolerant maize (Zea mays L.) lines cultivated in Cerrado soil by PCR-DGGE, 30 and 90 days after sowing. Bacterial fingerprints revealed that the bacterial communities from rhizospheres were more affected by aluminum stress in soil than by the maize line (Al-sensitive or Al-tolerant). Differences in bacterial communities were also observed over time (30 and 90 days after sowing), and these occurred mainly in the Actinobacteria. Conversely, fungal communities from the rhizosphere were weakly affected either by liming or by the rhizosphere, as observed from the DGGE profiles. Furthermore, only a few differences were observed in the DGGE profiles of the fungal populations during plant development when compared with bacterial communities. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Cerrado bulk soil revealed that Actinomycetales and Rhizobiales were among the dominant ribotypes.

Distinctive response of maize (Zea mays L.) genotypes in vitro with the acceleration of phytohormones

  • Muppala, Sridevi;Gudlavalleti, Pavan Kumar;Pagidoju, Sreenu;Malireddy, Kodandarami Reddy;Puligandla, Sateesh Kumar;Dasari, Premalatha
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.26-39
    • /
    • 2020
  • In maize, immature embryos (IEs) are highly regenerative explants most suitable for producing high frequencies of plantlet regeneration in vitro. Apart from media, explants, and hormones, genotypic variation also influences in vitro characters to a great extent. In the present study, IEs were used to study the distinctive effect of variation of size/stage and hormones in different genotypes on five in vitro characters viz., frequency of callus induction, growth rate of total callus, frequency of E. callus induction, and volume and number of regenerated plantlets. LS medium with different concentrations of 2,4-D (0.5, 1.5, 2.5, 4.0 and 5.0 mg/L) were used to study the former four in vitro characters, and medium with 6-benzylaminopurine and kinetin (0.5 mg/L, each) was used for plantlet regeneration. IEs of 1.0, 1.5, 2.0, 2.5 and 3.0 mm in size were isolated from four inbred lines viz., NM74C, NM81A, NM5883 and NM5884. Two-way ANOVA revealed that explant size and genotypes, as well as hormonal concentrations showed significant effects on in vitro characters. Two millimeter IEs were found to be suitable for in vitro cultures. LS medium with 1.5 mg/L 2,4-D and LS with BAP and Kn (0.5 mg/L, each) were found to be the best hormonal concentrations for callus induction, maintenance, and regeneration, respectively. Among the four genotypes, NM81A and NM5883 yielded more non-embryogenic and Type I E. calli. In contrast, NM74C and NM5884 yielded more highly regenerative Type II calli. Inbred line NM5884 was found to be the best among these four genotypes.

Magnoliae Cortex and maize modulate Porphyromonas gingivalis-induced inflammatory reactions

  • Kim, Jae-Yoon;Kim, Kyoung-Hwa;Kwag, Eun-Hye;Seol, Yang Jo;Lee, Yong Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.2
    • /
    • pp.70-83
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the capacity of single and combined applications of the bark of the stems and roots of Magnolia officinalis Rehd. et Wils. (Magnoliae Cortex) and Zea mays L. (maize) to modulate inflammation in RAW 264.7 cells stimulated with Porphyromonas gingivalis. Methods: RAW 264.7 cells were stimulated with P. gingivalis, and Magnoliae Cortex and/or maize was added. Cytotoxicity and the capacity to modulate inflammation were determined with a methylthiazol tetrazolium (MTT) assay, nitrite production, enzyme-linked immunosorbent assay (ELISA), and western blotting. Results: Treatment with Magnoliae Cortex and/or maize inhibited nuclear transcription factor ${\kappa}B$ ($NF-{\kappa}B$) pathway activation and nuclear p44/42 mitogen-activated protein kinase (MAPK) and inducible nitric oxide synthase (iNOS) protein expression in P. gingivalis-stimulated RAW 264.7 cells. Moreover, the treatments suppressed cytokines (prostaglandin $E_2$ [$PGE_2$], interleukin $[IL]-1{\beta}$, and IL-6) and nitrite production. Conclusions: Both Magnoliae Cortex and maize exerted an anti-inflammatory effect on P. gingivalis-stimulated RAW 264.7 cells, and this effect was more pronounced when the extracts were combined. These findings show that these extracts may be beneficial for slowing the progression of periodontal disease.

Transcriptomic profiling of the maize (Zea mays L.) to drought stress at the seedling stage

  • Moon, Jun-Cheol;Kim, Hyo Chul;Lee, Byung-Moo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.111-111
    • /
    • 2017
  • The development and productivity of maize (Zea mays L.) is frequently impacted by water scarcity, and consequently to increased drought tolerance in a priority target in maize breeding programs. To elucidate the molecular mechanisms of resistance to drought stress in maize, RNA-seq of the public database was used for transcriptome profiling of the seedling stage exposed to drought stress of three levels, such as moderate, severe drought stress and re-watering. In silico analysis of differentially expressed genes (DEGs), 176 up-regulated and 166 down-regulated DEGs was detected at moderated stress in tolerance type. These DEGs was increasing degradation of amino acid metabolism in biological pathways. Six modules based on a total of 4,771 DEGs responses to drought stress by the analysis of co-expression network between tolerance and susceptible type was constructed and showed to similar module types. These modules were discriminated yellow, greenyellow, turquoise, royalblue, brown4 and plum1 with 318, 2433, 375, 183, 1405 and 56 DEGs, respectively. This study was selected 30 DEGs to predicted drought stress response gene and was evaluated expression levels using drought stress treated sample and re-watering sample by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). 23 genes was shown increasing with drought stress and decreasing with re-watering. This study contribute to a better understanding of the molecular mechanisms of maize seedling stage responses to drought stress and could be useful for developing maize cultivar resistant to drought stress.

  • PDF

A Study on the Development of the Seeder for Soybean and Corn (콩.옥수수 육묘용 파종기 개발에 관한 연구)

  • Kim, Dong-Eok;Kim, Hyun-Hwan;Kim, Jong-Goo;Lee, Gong-In;Kim, Sung-Ki;Chang, Yu-Seob
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.330-335
    • /
    • 2010
  • Soybean (Glycine max Merr.) and corn (Zea mays L.) transplanting has increased because soybean and corn crops cultivated by the direct seeding method were often damaged by wild birds. The purpose of this study is to develop a seeder to sow soybean (Glycine max Merr.) and corn (Zea mays L.) in a plug tray. In order to find out design factors for a metering device of the seeder, metering characteristics on metering hole size and roller speed were experimentally investigated. Soybean (cv. 'Daewon') and corn (cv. 'Mibaekchal') were used as a materials for testing the seeder in this experiment. The metering hole size of roller suitable for Daewonkong and Mibaekchal was determined. Daewonkong was suitable for hole diameter of 10 mm and hole depth of 5.5 mm, and Mibaekcal was suitable for hole diameter of 9 mm and hole depth of 5.5 mm. At a brush length of 4 mm, one grain seeding rates of Daewonkong and Mibaekchal was 99% and 93% respectively. By inducing Mibaekchal to the hole by swing, one grain seeding rate of that increased from 91.9% to 97.7%. When roller speed is 4 m per minut, seeding efficiency of prototype was 110 sheets per hour.

EFFECT OF PROCESSING ON THE NUTRITIVE VALUE OF EIGHT CROP RESIDUES AND TWO FOREST GRASSES IN GOATS AND SHEEP

  • Reddy, M.R.;Reddy, G.V.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.2
    • /
    • pp.295-301
    • /
    • 1992
  • Eight crop residues : 1, sorghum (Sorqhum bicolor) straw, 2, maize (Zea mays) straw, 3, cotton (Gossypium Sp.) straw, 4, sunflower (Helianthus Sp.) straw, 5, cotton (Gossypium Sp.) seed hulls, 6, groundnut (Archais hypogaea) hulls, 7, maize (Zea mays) cobs, 8, sugarcane (Saccharum officinarum) bagasse and two forest grasses 9, Heteropogan contortus dry grass and 10, Sehima nervosum dry grass were subjected to three physical processing 1, chopping (2-3 cm) 2, grinding (8 mm sieve) and 3, pelleting (10 mm die holes). The processed material was fed ad lib. Along with 250 g of concentrate mixture per head per day to 6 adult local goats and 16 adult Nellore rams in ten digestion experiments and finally assessed the nutritive value of the processed roughages by difference method. Grinding increased bulk density by 32.4 (cotton seed hulls, CSH) to 88.1% (Sehima dry grass) while pelleting of ground material increased bulk density by 53.9 (maize cobs) to 235.8% (maize straw). The average particle size ranged from $584.1/^U$ (sorghum straw) to $1467/^U$ (CSH). Modulus of uniformity ranged from 2:5:3 (sorghum straw) to 7:2:1 (CSH) while modulus of fineness ranged from 3.4 (sorghum straw) to 5.4 (CSH). Molasses absorbability was highest with cotton seed hulls and least with maize cobs. Pelleting increased DM intake of the residues except cotton seed hulls compared to grinding. Grinding of chopped material/unprocessed material increased DM intake on sorghum straw and cotton seed hulls. Sheep consumed more DM compared to goats on all the residues except sorghum and sunflower straws. Pelleting increased nutritive value of all the residues compared to grinding and chopping. However, no difference was observed in the nutritive value due to grinding and chopping. Goats performed better compared to sheep in utilizing the fibrous residues.

Effects of Nitrogen Fertilization on Forage Production and Nutritive Nalue of Geukdong 6, Teosinte Hybrid [Zea mays L. subsp. mexicana (Schrad.) H. H. Iltis]

  • Wang, Chengyu;Lee, Sang Moo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • This study was conducted to evaluate the effects of different nitrogen levels on the yield and nutrient quality of a newly developed domestic hybrid of Teosinte, Geukdong 6〔Zea mays L. subsp. mexicana (Schrad.) H. H. Iltis〕. The field experiment was conducted in a randomized block design with three replicates and consisted of four nitrogen (N) application rates, T1 (200 kg/ha), T2 (300 kg/ha), T3 (400 kg/ha), and T4 (500 kg/ha). No differences were found in plant length, leaf length, leaf width, leaf number, dead leaves, stem hardness, tiller number, and fresh yield (p>0.05). The T3 showed significantly greater dry matter yield at harvest (heading stage) compared to the other treatments (p<0.05). The crude protein content of T4 (10.49%) was higher than those of T1 and T2 (p<0.05). However, there was no significant difference between T4 (10.49%) and T3 (9.63%). The effects on crude fat, crude ash, neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude fiber were not significant (p>0.05). The sugar content was higher in the T2 treatment than the other treatments (p<0.05). For Ca, T3 showed significantly greater content (p<0.05). However, no significant effects were found in the contents of Cu, Fe, K, Mg, Mn, Mo, and Zn (p>0.05). Na content was higher in order of T2 > T4 > T3 > T1 (p<0.05). Total mineral contents were not significantly different among the treatments (p>0.05). Given these results, we recommend the amount of nitrogen fertilization necessary for "Geukdong 6" to be around 400 kg per ha (T3), when considering, high fresh yield, dry matter yield, number of leaves and content of crude protein.

Occurrence of Sclerotium Rot of Corn Caused by Sclerotium rolfsii in Korea (Sclerotium rolfsii에 의한 옥수수 흰비단병 발생)

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;Lee, Heung-Su;Choi, Si-Lim;Lee, Sang-Dae;Cho, Hyeoun-Suk
    • The Korean Journal of Mycology
    • /
    • v.41 no.3
    • /
    • pp.197-199
    • /
    • 2013
  • The sclerotium rot of corn (Zea mays L.) occurred sporadically at the experimental field of Gyeongsangnam-do Agricultural Research and Extension Services in July 2011. The infected stems were water-soaked, wilted, and finally led to the death of the whole plants. White mycelial mats were spread over lesions, and then sclerotia were formed on stem and near soil line. The sclerotia were globoid in shape, white to brown in color and 1-3 mm in size. The hyphal width was $4-8{\mu}m$. The optimum temperature for mycelial growth and sclerotia formation on PDA was 30 on PDA. The typical clamp connections were observed in the hyphae of the fungus grown on PDA. On the basis of mycological characteristics and pathogenicity to host plants, this fungus was identified as Sclerotium rolfsii Saccardo. This is the first report of sclerotium rot on corn caused by S. rolfsii in Korea.

A Study on the Copper Tolerance of Herbaceous Plants (구리 내성 식물에 관한 연구)

  • Kim, Seong-Hyeon;Lee, In-Suk
    • The Korean Journal of Ecology
    • /
    • v.27 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • This research was investigated to prepare basic data in a study on the copper tolerance of herbaceous plants through the growth rate and the elimination rate dependent on Cu concentration of 6 species; Commelina communis, Medicago sativa, Echinochloa frumentancea, Zea mays, Helianthus annuus and Abutilon avicennae, We examined the germination rate, root and shoot growth of seedling and fresh biomass of 6 species (Commelina communis, Medicago sativa, Echinochloa frumentancea, Zea mays, Helianthus annuus and Abutilon avicennae) painted to Cu contaminated soil (50, 100, 200, 300-CuCl₂/㎏) and control for 14 days. The germination rate of H. annuus, E. frumentancea and C. communis were not affected by Cu concentration. However, root and shoot growth of H. annuus was about 7% of control and the biomass was 35% of control at 300 ㎎-CuCl₂/㎏. E. frumentancea and C. communis that showed good growth rate at higher Cu contaminated soil (>200 -CuCl₂/㎏), were the most tolerant plant to Cu concentration. Especially, E. frumentancea eliminated over 30% of Cu in soil and the amount of Cu uptake increased with increasing Cu concentration; 1,020㎎ Cu per 1 ㎏ of soil at 300 ㎎-CuCl₂/㎏. From these results, we concluded that E. frumentancea would be used for phytoremediation.