Browse > Article
http://dx.doi.org/10.5141/JEFB.2004.27.1.043

A Study on the Copper Tolerance of Herbaceous Plants  

Kim, Seong-Hyeon (이화여자대학교 생명과학과)
Lee, In-Suk (이화여자대학교 생명과학과)
Publication Information
The Korean Journal of Ecology / v.27, no.1, 2004 , pp. 43-47 More about this Journal
Abstract
This research was investigated to prepare basic data in a study on the copper tolerance of herbaceous plants through the growth rate and the elimination rate dependent on Cu concentration of 6 species; Commelina communis, Medicago sativa, Echinochloa frumentancea, Zea mays, Helianthus annuus and Abutilon avicennae, We examined the germination rate, root and shoot growth of seedling and fresh biomass of 6 species (Commelina communis, Medicago sativa, Echinochloa frumentancea, Zea mays, Helianthus annuus and Abutilon avicennae) painted to Cu contaminated soil (50, 100, 200, 300-CuCl₂/㎏) and control for 14 days. The germination rate of H. annuus, E. frumentancea and C. communis were not affected by Cu concentration. However, root and shoot growth of H. annuus was about 7% of control and the biomass was 35% of control at 300 ㎎-CuCl₂/㎏. E. frumentancea and C. communis that showed good growth rate at higher Cu contaminated soil (>200 -CuCl₂/㎏), were the most tolerant plant to Cu concentration. Especially, E. frumentancea eliminated over 30% of Cu in soil and the amount of Cu uptake increased with increasing Cu concentration; 1,020㎎ Cu per 1 ㎏ of soil at 300 ㎎-CuCl₂/㎏. From these results, we concluded that E. frumentancea would be used for phytoremediation.
Keywords
phytoremediation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 환경부. 2000. 환경백서 2000.
2 Harper, F.A., S.E. Smith and M.R. Macnair. 1997. Where is the cost in copper tolerance in Mimulus guttatus: Testing the trade-off hypothesis. Funct. Ecol. 11: 764-774.   DOI   ScienceOn
3 Wang, W. 1991. Literature review on higher plants for toxicity testing. Water Air Soil Poll. 59: 381-410.   DOI
4 Antonovics, J., A.D. Bradshaw and R.G. Turner. 1971. Heavy metal tolerance in plants. Adv. Ecol. Res. 7:1-85.   DOI
5 Baker, A.J.M. and P.L. Walker. 1990. Heavy metal tolerance in plant. In A.J. Shaw(ed.), Evolutionary Aspects, CRC Press, Boca Raton. pp. 155-165.
6 Tomsett, A.B. and D.A. Thurman. 1988. Molecular biology of metal tolerances of plants. Plant Cell Environ. 11: 383-394.   DOI
7 이준상. 2000. 닭의장풀 내 $Cd^+$ 의 분포와 생리적 독성, 환경생물학회지 18(1):63-67.   과학기술학회마을
8 배범한, 김선영, 이인숙, 장윤영. 2001. 2,4,6-trinitrotoluene에 대해 내성을 지닌 토착 식물종 선정에 대한 연구. 한국지하수토양환경학회지 6: 3-11.   과학기술학회마을
9 Kumar, P.B., A.N. Dushenkov, H.V. Motto and I. Raskin. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from environment using plants. Biotechnol. 13: 1332-1238.
10 Willmer, C.M. 1983. Stomata, Longman Inc., New York.
11 Jackson, P.J., P.J. Unkefer, E. Delhaize and N.J. Robinson. 1990. Mechanisms of trace metal tolerance in plants. In katterman F(ed.) Environmental inquiry to plants, Academic Press, San Diego. pp. 231-258.
12 백승식, 장순응, 이시진. 1999. 식물학적 복원 공정. 산업기술종합연구소 논문집 18(1): 77-84.
13 Ure, A.M. 1995. Methods of Analysis for Heavy Metals in Soils. In B.J. Alloway(ed.), Heavy Metals in Soil, 2nd Ed. Chapman and Hall, New York. pp. 58-60.
14 Wallnofer, P.R. and G. Engelhardt. 1984. Schadstoffe, die aus dem Boden aufgenommen werden. In Hock B. and Elstner E. F.(eds.), Pflanzentoxikologie. BIWissenschaftsverlag, Mannheim. pp. 96-117.
15 Mengel, K. and E.A. Kirby. 1987. Principles of plant nutrition. International Potash Institute, Berne.
16 Turner, A.P., N.M. Dickinson and N.W. Lepp et al. 1991. Indices of metal tolerance in tress. Water Air Soil Poll. 57-58: 617-625.   DOI
17 David, J.H., B.A. Rattner, G.A. Burtor Jr and J. Cairns Jr. 1995. Handbook of Ecotoxicology.
18 Mohan, B.S. and B.B. Hosetti. 1991. Aquatic plants for toxicity assessment. Environ. Res. A.81: 259-274.