• Title/Summary/Keyword: and LabVIEW

Search Result 780, Processing Time 0.033 seconds

KSRBL 운영 및 초기관측

  • HwangBo, Jung-Eun;Bong, Su-Chan;Choi, Seong-Hwan;Baek, Ji-Hye;Cho, Kyung-Suk;Lee, Dae-Young;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.33.1-33.1
    • /
    • 2010
  • 태양전파폭발위치관측기(KSRBL)는 단일 안테나 전파분광기로써 미 뉴저지공과대학과의 협력으로 2009년 8월에 한국천문연구원에 개발 설치되었다. 1 MHz 스펙트럼 분해능과 1초의 시간 분해능을 가지고 있고 관측할 수 있는 주파수 대역은 245, 410 MHz 와 0.5-18 GHz에 이르는 광대역이다. 또한 태양 전면 $0.03^{\circ}$ 각거리 안의 오차 범위 내에 태양 폭발 위치를 감지할 수 있다. 전파 관측은 LabVIEW와 IDL 프로그램에 의해 미리 짜여진 관측 스케줄에 따라 매일 자동으로 진행된다. 하루에 생성되는 원시데이터는 90 GB 정도이며, 태양이 지고나면 원시데이터는 적분과정을 통해 용량이 6 GB 정도로 줄어들게 된다. 이렇게 처리된 파일은 바로 데이터 서버에 자동 전송된다. 또한 KSRBL 관측일지 홈페이지를 웹기반으로 개발하였으며 조만간 이를 데이터 전송과 연계하여 전파 폭발이 감지될 경우 원시데이터도 데이터 서버에 자동 전송되도록 할 예정이다. 2010년 1월에서 2월 8일 사이 5개의 전파 폭발이 관측되었고 태양활동이 점차 활발해짐에 따라 관측횟수는 더욱 늘어날 전망이다. 관측된 사례들에 대해 다른 전파 및 X선 관측과 비교분석하였다.

  • PDF

Tracking Detection using Information Granulation-based Fuzzy Radial Basis Function Neural Networks (정보입자기반 퍼지 RBF 뉴럴 네트워크를 이용한 트랙킹 검출)

  • Choi, Jeoung-Nae;Kim, Young-Il;Oh, Sung-Kwun;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2520-2528
    • /
    • 2009
  • In this paper, we proposed tracking detection methodology using information granulation-based fuzzy radial basis function neural networks (IG-FRBFNN). According to IEC 60112, tracking device is manufactured and utilized for experiment. We consider 12 features that can be used to decide whether tracking phenomenon happened or not. These features are considered by signal processing methods such as filtering, Fast Fourier Transform(FFT) and Wavelet. Such some effective features are used as the inputs of the IG-FRBFNN, the tracking phenomenon is confirmed by using the IG-FRBFNN. The learning of the premise and the consequent part of rules in the IG-FRBFNN is carried out by Fuzzy C-Means (FCM) clustering algorithm and weighted least squares method (WLSE), respectively. Also, Hierarchical Fair Competition-based Parallel Genetic Algorithm (HFC-PGA) is exploited to optimize the IG-FRBFNN. Effective features to be selected and the number of fuzzy rules, the order of polynomial of fuzzy rules, the fuzzification coefficient used in FCM are optimized by the HFC-PGA. Tracking inference engine is implemented by using the LabVIEW and loaded into embedded system. We show the superb performance and feasibility of the tracking detection system through some experiments.

Education equipment for FPGA-based multimedia player design (FPGA 기반의 멀티미디어 재생기 설계 교육용 장비)

  • Yu, Yun Seop
    • Journal of Practical Engineering Education
    • /
    • v.6 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • Education equipment for field programmable gate array (FPGA) based multimedia player design is introduced. Using the education equipment, an example of hardware design for color detection and augment reality (AR) game is described, and an example of syllabus for "Digital system design using FPGA" course is introduced. Using the education equipment, students can develop the ability to design some hardware, and to train the ability for the creative capstone design through conceptual, partial-level, and detail designs. By controlling audio codec, system-on-chip (SOC) design skills combining a NIOS II soft microprocessor and digital hardware in one FPGA chip are improved. The ability to apply wireless communication and LabView to FPGA-based digital design is also increased.

A Study on Hybrid Electric Drive System for the AEGIS Destroyer (이지스 구축함용 HED 시스템에 관한 연구)

  • Jung, Sung Young;Oh, Jin Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.868-876
    • /
    • 2014
  • Arleigh Burke(DDG-51) and Sejong warship are AEGIS destroyer of US Navy and Korea Navy. These are designed to make more than 30knots by applying a COGAG(COmbined Gas turbine And Gas turbine) system. However, the gas turbine(LM2500) in this system has a low SFC (Specific Fuel Consumption) when the warship operated low speed. So, many kinds of companies are researching the HED(Hybrid Electric Drive) system to improve this problem. The purpose of this paper is to analyze the HED system and simulate by Sejong warship data. Serveral methods were used for that purpose. More specifically, the equipment modeling are employed for regression analysis by LabVIEW. As a result, it was found that the warship installed HED system could cut their fuel bills by as much as about 80,000,000won per year.

DEVELOPMENT OF A MACHINE VISION SYSTEM FOR AN AUTOMOBILE PLASTIC PART INSPECTION

  • ANDRES N.S.;MARIMUTHU R.P.;EOM Y.K.;JANG B.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1131-1135
    • /
    • 2005
  • Since human is vulnerable to emotional, physical and environmental distractions, most human inspectors cannot sustain a consistent 8-hour inspection in a day specifically for small components like door locking levers. As an alternative for human inspection, presented in this study is the development of a machine vision inspection system (MVIS) purposely for door locking levers. Comprises the development is the structure of the MVIS components, designed to meet the demands, features and specifications of door locking lever manufacturing companies in increasing their production throughput upon keeping the quality assured. This computer-based MVIS is designed to perform quality measures of detecting missing portions and defects like burr on every door locking lever. NI Vision Builder software for Automatic Inspection (AI) is found to be the optimum solution in configuring the needed quality measures. The proposed software has measurement techniques such as edge detecting and pattern-matching which are capable of gauging, detecting missing portion and checking alignment. Furthermore, this study exemplifies the incorporation of the optimized NI Builder inspection environment to the pre-inspection and post-inspection subsystems.

  • PDF

Evaluation of the Effect of High Salinity RO Concentrate on the Microbial Acclimation/Cultivation Characteristics in Biological Wastewater Treatment Process (RO 농축수내 고농도 염분이 생물학적 폐수처리공정내 미생물 순응/배양에 미치는 영향평가)

  • Kim, Youn-Kwon;Kang, Suk-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.707-713
    • /
    • 2012
  • There are a lot of parameters affecting microbial acclimation/cultivation characteristics such as dynamic conditions, F/M ratio and substrate affinity. From the process control point of view, the effect of high salinity on the removal efficiencies of BOD and SS have been documented by few researchers. In this research, lab-scale CAS(Conventional Activated Sludge) process and modified $A_2O$(Anaerobic/Anoxic/Oxic) process were operated and monitored to evaluate the characteristics of microbial acclimation and cultivation under high salinity wastewater during the period of three weeks. As a result of acute microbial activity test(6hr) at various $Cl^-$ concentration, the appropriate $Cl^-$ concentration for microbial growth and acclimation ranged under 3,100 mg/l. As a result of acclimation/cultivation test, the trend of COD removal efficiency reduced gradually as time elapsed. It is considered that $NH_4$-N removal phenomenon of the conventional pollutants removal mechanisms gave little effect to the microbial acclimation/cultivation under high salinity wastewater.

Measurement uncertainty evaluation in FaroArm-machine using the bootstrap method

  • Horinov, Sherzod;Shaymardanov, Khurshid;Tadjiyev, Zafar
    • Journal of Multimedia Information System
    • /
    • v.2 no.3
    • /
    • pp.255-262
    • /
    • 2015
  • The modern manufacturing systems and technologies produce products that are more accurate day by day. This can be reached mainly by improvement the manufacturing process with at the same time restricting more and more the quality specifications and reducing the uncertainty in part. The main objective an industry becomes to lower the part's variability, since the less variability - the better is product. One of the part of this task is measuring the object's uncertainty. The main purpose of this study is to understand the application of bootstrap method for uncertainty evaluation. Bootstrap method is a collection of sample re-use techniques designed to estimate standard errors and confidence intervals. In the case study a surface of an automobile engine block - (Top view side) is measured by Coordinate Measuring Machine (CMM) and analyzed for uncertainty using Geometric Least Squares in complex with bootstrap method. The designed experiment is composed by three similar measurements (the same features in unique reference system), but with different points (5, 10, 20) concentration at each level. Then each cloud of points was independently analyzed by means of non-linear Least Squares, after estimated results have been reported. A MatLAB software tool used to generate new samples using bootstrap function. The results of the designed experiment are summarized and show that the bootstrap method provides the possibility to evaluate the uncertainty without repeating the Coordinate Measuring Machine (CMM) measurements many times, i.e. potentially can reduce the measuring time.

Development of Mock Control Devices and Data Acquisition Apparatus for Power Tiller Training Simulator

  • Kim, YuYong;Kim, Byounggap;Shin, Seung-yeoub;Kim, Byoungin;Hong, Sunjung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.284-288
    • /
    • 2015
  • Training power tiller operators in safe farming is necessary to avoid farming accidents. With the continuing progress in computational technology, driving simulators have become increasingly popular for conducting such training. Purpose: The objective of this study is to develop mock control devices and data acquisition apparatus for a tiller simulator. Methods: Except for the stand and tail wheel adjusting levers, the mock control devices were developed using a tiller handle assay. The data acquisition apparatus was realized using an embedded data-logging device and LabVIEW, the system design software. Results: The control devices of a real handle assay were successfully mimicked by the mock operator control devices, which used sensors for the relevant measurements. The data from the mock devices were acquired and transmitted to the main computer at intervals of 10 ms via Wi-Fi. Conclusions: The developed mock control devices operate similar to real power tillers and can be utilized in power tiller training simulators.

Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors

  • Yu, Lingyu;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.185-215
    • /
    • 2005
  • Advanced signal processing techniques have been long introduced and widely used in structural health monitoring (SHM) and nondestructive evaluation (NDE). In our research, we applied several signal processing approaches for our embedded ultrasonic structural radar (EUSR) system to obtain improved damage detection results. The EUSR algorithm was developed to detect defects within a large area of a thin-plate specimen using a piezoelectric wafer active sensor (PWAS) array. In the EUSR, the discrete wavelet transform (DWT) was first applied for signal de-noising. Secondly, after constructing the EUSR data, the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used for the time-frequency analysis. Then the results were compared thereafter. We eventually chose continuous wavelet transform to filter out from the original signal the component with the excitation signal's frequency. Third, cross correlation method and Hilbert transform were applied to A-scan signals to extract the time of flight (TOF) of the wave packets from the crack. Finally, the Hilbert transform was again applied to the EUSR data to extract the envelopes for final inspection result visualization. The EUSR system was implemented in LabVIEW. Several laboratory experiments have been conducted and have verified that, with the advanced signal processing approaches, the EUSR has enhanced damage detection ability.

Experimental Study on Optimal Operation Strategies for Energy Saving in Building Central Cooling System (건물 중앙냉방시스템의 에너지절감을 위한 최적운전 방안에 관한 실험적 연구)

  • Hwang, Jin-Won;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4610-4615
    • /
    • 2013
  • In this study, optimal operation strategies to save the electric energy and power price in the building central cooling system is researched by experiments. The optimal strategies of demand response control and outdoor temperature reset control algorithms are applied by consideration the electric energy and power price according to the energy consumption characteristics. The suggested optimal control method shows better responses in the power price and energy consumption in comparison with the conventional one and saves energy consumption by 9.5% and electronic price by 15.7%, respectively.