• Title/Summary/Keyword: and CFD

Search Result 5,377, Processing Time 0.035 seconds

Issues and Solutions for the Numerical Analysis of High Mach Number Flow over a Blunt-Body (무딘 물체 주위 고마하수 유동해석의 문제점과 해결책)

  • 원수희;정인석;최정열;신재렬
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.18-28
    • /
    • 2006
  • Numerical analysis of high Mach number flow over a blunt-body poses many difficulties and various numerical schemes have been suggested to overcome the problems. However, the new schemes were used in the limited fields of applications because of the lack of field experience compared to more than 20 years old numerical schemes and the intricacies of modifying the existing code for the special application. In this study, some tips to overcome the numerical difficulties in solving the 3D high-Mach number flows by using Roe's scheme, the most widely used for the past 25 years and adopted in many commercial codes, were examined without a correction of the algorithm or a modification of the CFD code. The well-known carbuncle phenomena of Riemann solvers could be remedied even for an extremely high Mach number by applying the entropy fixing function and a unphysical solution could be overcome by applying a simply modified initial condition regardless of the entropy fixing and grid configuration.

Aeroacoustics Analysis and Noise Reduction of Dual Type Combined Fan using Lattice-Boltzmann Method (Lattice-Boltzmann Method를 이용한 이중구조팬의 공력소음 해석 및 저감)

  • Kim, Wootaek;Ryu, Minhyung;Kim, Jinwook;Ho, Sunghwan;Cho, Leesang;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.381-390
    • /
    • 2016
  • In this study, aeroacoustic characteristics of combined fan are investigated and noise was reduced by applying Serrated Trailing Edge which is known as the method to reduce fan noises. Unsteady CFD (Computational Fluid Dynamics) analysis was carried out using Lattice Boltzmann Method(LBM) to figure out the combined fan's aeroacoustics and experimental results was used to verify simulation results. Results show that different BPFs are generated at the each inner fan and outer fan on the different frequency while Blade Passing Frequency(BPF) of general fans is constant on the entire frequency range. Boundary vortex and vortex shedding are suppressed or dispersed by applying the Serrated Trailing Edge to the inner fan. Furthermore, broadband noise and fan's torque are reduced.

Air Curtain Nozzle Design for Uniform Jet Expulsion (균일한 제트 분출을 위한 에어커튼 노즐 설계)

  • Park, Won-Hee;Chang, Hee-Chul
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.39-45
    • /
    • 2016
  • The optimal design of an air curtain nozzle installed at exits, such as fire doors, was determined in order to block the flow of smoke into safe zones. Smoke is the greatest cause of loss of life during the fire. To block the flow of smoke, the airflow must be expelled uniformly without eccentricity from the slits in the air curtain nozzle installed on the upper part of the opening. In order to accomplish this, factors such as air inflow volume, shape of the internal slits, and thickness of the external slits were considered as variables in this study, and a numerical analysis was performed under various conditions. This led to the selection of a final shape which led to the finalization of a design shape. The final shape was manufactured as a prototype and the results were compared and verified with the results of the numerical analysis. The relative error of the numerical analysis results was less than 1%, and the average speed of all the slits was tested, exhibiting a highly consistent tendency.

Development of An Unsteady Navier-Stokes Solver using Implicit Dual Time Stepping Method and DADI Scheme (내재적 이중시간 전진기법과 DADI 기법을 이용한 비정상 Navier-Stokes 코드개발)

  • Lee, Eun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.34-40
    • /
    • 2005
  • In present study, a two dimensional unsteady Navier-Stokes solver has been developed using the Diagonalized ADI (DADI) method and implicit dual time stepping method. The jacobian matrices in steady state Navier-Stokes equations are introduced from inviscid flux terms. The implicit treatment of artificial dissipation terms results in a block penta-diagonal matrix system and it becomes a scalar penta-diagonal matrix by diagonalization. In steady state equations about fictitious time, a new residual including a real time derivative term is introduced. From a converged solution about fictitious time, a real time unsteady solution can be obtained, which is called 'implicit dual time stepping method'. For code validation, an oscillating flat plate, a regular Karman vortices past a circular cylinder and shock buffeting around a bicircular airfoil problems are numerically solved. And they are compared with a theoretical solution, experiments and other researcher's computations.

A Study on the Prediction of Fire Load in case of a Train Fire (철도 차량 화재시 화재강도 예측을 위한 연구)

  • Yang, Sung-Jin;Chang, Jung-Hoon;Gang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2101-2108
    • /
    • 2008
  • Most of train fires which occur in usual cases do not grow up significantly on a large scale enough to bring about casualties and harmful damages. However, the consequence of some train fire accidents can be devastating disaster so that it would be even recorded in history in unusual cases. Accordingly, such a probability of fire disaster cannot be ignored in aspect of the railway safety assesment. A scale of injury and damage is very difficult to predict and analyze. Because it is depend on various factors, i.e. fire load, burning period, facilities, environment condition, and so on. Thus, a prediction of fire load could be understood as a one methodology to estimate railway safety assesment. The summation method which is one of them is used to evaluate the overall fire load by assuming that sum of heat release rate per unit area or mass of each composite material equals the total. However, since the train fire is classified into a compartment fire in under-ventilation condition. The summation method do not estimate a fire load completely. In this journal, Various methods to predict fire load are introduced and evaluated. Especially the fire simulation tool FDS(Fire Dynamics Simulator)which is based on the CFD(Computational Fluid Dynamics) is introduced, too. Through the FDS simulation, numerical analyses for the fire load and flame spread are performed. Then, these results of the simulation are validated through the comparison study with the experimental data. Then, limitations and approximations including in simulation process are discussed. The future direction of research is proposed.

  • PDF

Numerical Study on Steam-Methane Reaction Process in a Single Tube Considering Porous Catalyst (다공성 촉매를 고려한 단일튜브 내의 수증기-메탄 개질에 관한 수치해석 연구)

  • Moon, Joo Hyun;Lee, Seong Hyuk;Yoon, Kee Bong;Kim, Ji Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.56-62
    • /
    • 2014
  • The present study investigated numerically heat and mass transfer characteristics of a fixed bed reactor by using a computational fluid dynamics (CFD) code of Fluent (ver. 13.0). The temperature and species fraction were estimated for different porosities. For modeling of the catalyst in a fixed bed tube, catalysts were regarded as the porous material, and the empirical correlation of pressure drop based on the modified Eugun equation was used for simulation. In addition, the averaged porosities were taken as 0.545, 0.409, and 0.443 and compared with non-porous state. The predicted results showed that the temperature at the tube wall became higher than that estimated along the center line of tube, leading to higher hydrogen generation by the endothermic reaction and heat transfer. As the mean porosity increases, the hydrogen yield and the outlet temperature decreased because of the pressure drop inside the reformer tube.

Computational Investigation of the Thermal Performances of Polymer Heat Sinks Passively-Cooled by Seawater for Thermoelectric Waste Heat Recovery (열전폐열회수를 위해 수동적으로 해수냉각되는 폴리머 히트싱크 열성능의 수치적 연구)

  • Kim, Kyoung Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.432-436
    • /
    • 2015
  • This study computationally explored the thermal performance of passively-cooled polymer heat sinks utilizing seawater. Polymer heat sinks are proposed as cooling modules of the cold sides of thermoelectric generators for waste heat recovery. 3-D Computational Fluid Dynamics (CFD) modelling was conducted for a detailed numerical study. Polyphenylene sulfide (PPS) and pyrolytic graphite (PG) were selected for the base materials of polymer heat sinks. The computational study evaluated the performance of the PPS and PG heat sinks at various fin numbers and fin thicknesses. Their performances were compared with those of aluminum (Al) and titanium (Ti) heat sinks. The study results showed that the thermal performance of the PG heat sink was 3~4 times better than that of the Ti heat sink. This might be due mainly to the better heat spreading of the PG heat sink than the Ti heat sink. The effect of the number of fins on the performance of the PG heat sink was dissimilar to the cases of the PPS and Ti heat sinks. This result can be explained by the interrelationships among heat spreading, surface area enhancement, and fluidic resistance incorporating with an increase in the number of fins.

Valve core shapes analysis on flux through control valves in nuclear power plants

  • Qian, Jin-yuan;Hou, Cong-wei;Mu, Juan;Gao, Zhi-xin;Jin, Zhi-jiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2173-2182
    • /
    • 2020
  • Control valves are widely used to regulate fluid flux in nuclear power plants, and there are more than 1500 control valves in the primary circuit of one nuclear power plant. With their help, the flux can be regulated to a specific level of water or steam to guarantee the energy efficiency and safety of the nuclear power plant. The flux characteristics of the control valve mainly depend on the valve core shape. In order to analyze the effects of valve core shapes on flux characteristics of control valves, this paper focuses on the valve core shapes. To begin with, numerical models of different valve core shapes are established, and results are compared with the ideal flux characteristics curve for the purpose of validation. Meanwhile, the flow fields corresponding to different valve core shapes are investigated. Moreover, relationships between the valve core opening and the outlet flux under different valve core shapes are carried out. The flux characteristics curve and equation are proposed to predict the outlet flux under different valve core openings. This work can benefit the further research of the flux control and the optimization of the valve core for control valves in nuclear power plants.

Effects of Flow Acceleration on Drag Force and Wake Field of 2D Circular Cylinder (유입 유동의 가속도가 2D 원형실린더의 항력 및 후류에 미치는 영향)

  • Son, Hyun A;Lee, Sungsu;Cho, Seong Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.507-514
    • /
    • 2019
  • Computational studies of accelerating flow around 2D Circular Cylinder was performed to investigate characteristics of wake field and drag forces. Previous studies had revealed that drag on the cylindrical body in accelerating flow is much greater than that in the flow with constant velocity; however, the underlying physics on the drag increase has not been clearly investigated. In order to investigate the drag increase and its relationship with wake development, this study employed a finite-volume based CFD code, Fluent 13.0 with k-ω SST model for turbulence effects. Inflows are modeled with varied accelerations from 0.4905 to 9.81m/s2. The drag computed in the present study is in good agreement with previous studies, and clearly shows the increase compared to the drag on the body in the flow with constant velocity. The results also show that drag crisis observed at high Reynolds number in the case of the flow with constant velocity is also found in the case of accelerating flow. The analysis for wake and recirculation length shows that conventional vortex shedding does not occur even at high Reynolds number and the drag increase is larger at higher acceleration.

Design simulation of magnetic separator for purification of silica sand (자력선별방식을 이용한 고순도 실리카 정제 최적화를 위한 전산모사)

  • Choi, Hyun-Jin;Jo, Young Min;Lee, Jun Yub;Kim, Sang Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.181-187
    • /
    • 2016
  • Silica is an essential material in the electronics industries of LCDs and OLEDs, which particularly require high purity. This study attempted to find the optimal design of a magnetic separator for silica sand containing iron compounds using CFD simulation. Three designs of magnetic separation were prepared and their efficiency was examined. As a result of the evaluation, the sufficient contact of particulate silica with the surface of magnetic emitters improved the magnetic separation effects. In addition, the loss of $SiO_2$ and the removal rate of $Fe_2O_3$ depended strongly on the particle size, flow rate and magnetic flux density. In addition, magnetic separation is quite effective for a particle size of $10{\mu}m$ with a 0.2 m/s flow rate.