• 제목/요약/키워드: and CFD

검색결과 5,399건 처리시간 0.035초

다단 천음속 축류형 압축기 성능에 관한 실험적 연구 (Experimental Research on Multi Stage Transonic Axial Compressor Performance Evaluation)

  • 강영석;박태춘;황오식;양수석
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.96-101
    • /
    • 2011
  • Korea Aerospace Research Institute is performing 3 stage transonic axial compressor development program. This paper introduces design step of the compressor, the performance test results and its analysis. In the fore part of the paper, aerodynamic process of the 3 stage axial compressor is presented. To satisfy both of the mass flow and pressure rise, the compressor should rotate at a high rotational speed. Therefore the transonic flow field forms in the rotor stages and it is designed with a relatively high pressure rise per stage to satisfy its design target. The compressor stage consists of 3 stages, and the bulk pressure ratio is 2.5. The first stage is burdened with the highest pressure ratio and less pressure rises occur in the following stages. Also it is designed that tip Mach number of the first rotor row does not exceed 1.3, while the maximum relative Mach number in the rotor stage is between 1.3~1.4 to increase the compressor flow coefficient. The final design has been confirmed by iterating three dimensional CFD calculations to verify design target and some design intentions. In the latter part of the paper, its performance test processes and results are presented. The performance test result shows that the overall compressor performance targets; pressure ratio and efficiency are well achieved. The stator static pressure distributions show that the blade loading is gradually increasing from the downstream of the compressor.

손상된 라이저로부터 유출된 기름 확산에 대한 수치해석 (Numerical Investigation on Oil Spill from Damaged Riser)

  • 김효주;이상철;박선호
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제19권2호
    • /
    • pp.99-110
    • /
    • 2016
  • 해양에서 시추작업 중 라이저가 손상되어 기름유출이 발생하면 경제적인 피해 뿐 아니라 해양환경에 막대한 피해를 가져오게 되므로 사고 발생 시 신속하게 사고에 대처해야 될 뿐만 아니라 초기의 기름 유출량 및 확산 정도를 파악하는 것이 중요하다. 본 연구에서는 소스코드가 공개된 전산유체역학 라이브러리인 OpenFOAM을 이용하여 손상된 라이저로 부터 기름이 유출되는 현상을 해석하였다. 수치방법을 검증하기 위해 제트 유동과 밀도 차에 의한 확산 문제인 Rayleigh-Taylor instability를 해석하였다. 라이저의 손상된 크기, 기름 유출량, 손상된 위치, 해류의 속도를 변화시키며 해석하였다. 해석 결과 기름이 유출 될 경우 수면에 도달 할 때까지 이동한 거리 및 시간을 예측하여 기름 확산에 대비할 수 있는 가이드라인을 제시하였다.

지열 열교환시스템 개발을 위한 지중 열유동 특성분석 (Analysis of Heat Transfer Characteristics in Soil for Development of a Geothermal Heat Exchange System)

  • 이용범;조성인;강창호;정인규;이충근;성제훈;정선옥;김영복
    • Journal of Biosystems Engineering
    • /
    • 제30권3호
    • /
    • pp.185-191
    • /
    • 2005
  • Importance of alternative energy has been increasing due to environmental issues and lack of fossil fuels. In addition, heating cost that occupies from 30 to $40\%$ of the total production cost in the protected cultivation sector in Korea needs to be reduced for profitability and global competition. But, study on geothermal energy to solve these problems has not been activated for Korean protected cultivation. This study was conducted to develop an optimized geothermal exchange system through fundamental test of heat transfer characteristics in soil such as thermal diffusivity, changes in soil temperature during heating and cooling operations, and restorations of soil temperature after the heater was fumed off, These issues were investigated using computer simulation for different depths. The simulated characteristics were evaluated through controlled tests. Simulated characteristics of heat transfer in the soil at different depths showed a reasonable agreement with the results of the controlled tests. All of computer simulation and controlled tests, soil temperatures changed at 10cm and 20cm distance from pipe. but don't change at more than 30cm distance. It means that distances of heat transfer of the soil ranged from 20 to 30cm a day. Based on these results, the optimum spacing between adjacent heat exchange pipes and the pitch were selected as 50 and 40cm, respectively.

운전조건에 따른 펌프 터빈 시스템의 안정성 연구 (Reliability Investigation of a Pump-Turbine System at Various Operating Conditions)

  • 천청청;패트릭마크싱;최영도
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.46-52
    • /
    • 2015
  • Pump-turbine system is widely used by the hydropower industry for stabilizing the electrical grid in the vast growing economy of most developed countries. This study only investigates the Fluid-structure Interaction (FSI) analysis of the pump-turbine system at various operating conditions. The FSI analysis can show how reliable each component of the system is by providing the engineer with a better understanding of high stress and deformation points, which could reduce the lifespan of the pump-turbine. Pump-turbine components are categorized in two parts, pressurized static parts and movable stressed parts. The fixed parts include the spiral casing, top and bottom cover, stay vane and draft tube. The movable parts include guide vanes and impeller blades. Fine hexahedral numerical grids were used for CFD calculation and fine tetrahedral grids were used for structural analysis with imported load solution mapping greater than 90 %. The maximum equivalent stress are much smaller than the material yield stress, and the maximum equivalent stress showed an increasing tendency with the varying of operating conditions from partial to excessive at both modes. In addition, the total deformation of all the operating conditions showed a small magnitude, which have quite small influence on the structural stability. It can be conjectured that this system can be safely implemented.

Numerical Analysis of the Whole Field Flow in a Centrifugal Fan for Performance Enhancement - The Effect of Boundary Layer Fences of Different Configurations

  • Karanth, K. Vasudeva;Sharma, N. Yagnesh
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.110-120
    • /
    • 2009
  • Generally the fluid flows within the centrifugal impeller passage as a decelerating flow with an adverse pressure gradient along the stream wise path. This flow tends to be in a state of instability with flow separation zones on the suction surface and on the front shroud. Hence several experimental attempts were earlier made to assess the efficacy of using boundary layer fences to trip the flow in the regions of separation and to make the flow align itself into stream wise direction so that the losses could be minimized and overall efficiency of the diffusion process in the fan could be increased. With the development of CFD, an extensive numerical whole field analysis of the effect of boundary layer fences in discrete regions of suspected separation points is possible. But it is found from the literature that there have been no significant attempts to use this tool to explore numerically the utility of the fences on the flow field. This paper attempts to explore the effect of boundary layer fences corresponding to various geometrical configurations on the impeller as well as on the diffuser. It is shown from the analysis that the fences located on the impellers near the trailing edge on pressure side and suction side improves the static pressure recovery across the fan. Fences provided at the radial mid-span on the pressure side of the diffuser vane and near the leading edge and trailing edge of the suction side of diffuser vanes also improve the static pressure recovery across the fan.

10kW급 상반전 풍력터빈 로터의 설계와 성능 평가에 관한 연구 (Design and Performance Evaluation of a 10kW Scale Counter-Rotating Wind Turbine Rotor)

  • 황안둥;양창조
    • 해양환경안전학회지
    • /
    • 제20권1호
    • /
    • pp.104-112
    • /
    • 2014
  • 상반전 풍력터빈은 설계와 성능 관점에서 최근 각광을 받기 시작하고 있다. 본 논문은 NREL S822, S823을 이용하여 설계 및 모델링한 상반전 풍력터빈에 대해 연구를 수행하였다. 본 논문은 수치해석 기법을 통하여 단일 풍력터빈과 상반전 풍력터빈을 각각 설계하고, 그 성능을 다양한 조건에서 비교하고자 하였다. 그 결과 상반전 풍력터빈은 단일 풍력 터빈에 비해 TSR 3~5 영역에서 보다 높은 성능계수를 나타냈으며, 그 보다 더 높은 TSR 영역에서는 낮은 성능계수를 나타내었다. 이것은 로터 상 하류의 간섭의 간섭 때문이며, 또한 본 연구에서는 낮은 영역의 TSR에서 운전되는 상반전 풍력터빈의 유효성을 함께 보였다.

간이형 에어베리어 시스템 적용사례 분석 (The Simplified Air Barrier System in the Perimeter Area of Building)

  • 조진균;신선준;차지형;성재호;홍미호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.906-911
    • /
    • 2008
  • Because the perimeter of buildings is strongly influenced by solar and the outdoor air temperature, the area has different environmental properties compared to the interior of a building, as in summer heat gain, and in winter heat loss. In particular, if the external wall is glass, the characteristics of the glass material make it pervious to outside conditions, thereby making big changes to the thermal environment. By combining shading device and the efficient exhaust system, an energy saving can be achieved compared to no air barrier systems. The simplified air barrier system is developed with the idea that energy could be conserved by carefully and effectively blowing out the air caught between the glass surface and the roller blind. The way it is configured is therefore by making the roller blind's air-path, and by placing the air output ducts in the most optimum positions. This simplified air barrier system will give improvement in the thermal environment of the parameter area that is strongly affected by solar and the outdoor condition.

  • PDF

사출 성형된 일회용 카오스 마이크로 믹서의 개발: 나선형 라미네이션 마이크로 믹서 (I) - 디자인 및 수치 해석 - (Development of an Injection Molded Disposable Chaotic Micromixer: Serpentine Laminating Micromixer (I) - Design and Numerical Analysis -)

  • 김동성;이세환;권태헌
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1289-1297
    • /
    • 2005
  • The flow in a microchannel is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved. In this regard, we developed a novel chaotic micromixer, named Serpentine Laminating Micromixer (SLM) in the present study, Part 1. In the SLM, the higher level of chaotic mixing can be achieved by combining two general chaotic mixing mechanisms: splitting/recombination and chaotic advection. The splitting and recombination (in other term, lamination) mechanism is obtained by the successive arrangement of 'F'-shape mixing units in two layers. The chaotic advection is induced by the overall three-dimensional serpentine path of the microchannel. Chaotic mixing performance of the SLM was fully characterized numerically. To compare the mixing performance, a T-type micromixer which has the same width, height and length of the SLM was also designed. The three-dimensional numerical mixing simulations show the superiority of the SLM over the T-type micromixer. From the cross-sectional simulation results of mixing patterns, the chaotic advection effect from the serpentine channel path design acts favorably to realize the ideal lamination of fluid flow as Re increases. Chaotic mixing mechanism, proposed in this study, could be easily integrated in Micro-Total-Analysis-System, Lab-on-a-Chip and so on.

Visualization of Underexpanded Jet Structure from Square Nozzle

  • Tsutsumi, Seiji;Yamaguchi, Kazuo;Teramoto, Susumu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.408-413
    • /
    • 2004
  • Numerical and experimental investigation were car-ried out to clarify the flow structure of underexpanded jet from a square nozzle. The square nozzle rep-resents one of the clustered combustors of a linear aerospike engine. From the numerical results, the three-dimensional shock wave of the underexpanded square jet was found to be composed of two shocks. One is the intercepting shock which corresponds to the shock observed in two-dimensional planar jet. The other is the recompression shock divided into two types. The expansion fans coming from the nozzle edges interact with each other at the comers of the nozzle exit, and overexpanded regions are generated. Therefore one of the two recompression shocks is formed at the comers of the nozzle exit behind the overexpanded regions. As the jet goes downstream, the overexpanded regions grow larger to coalesce at the symmetry planes. Then, the other type of the recompression shock is generated. The three-dimensional shock structure formed by the intercepting shock and the recompression shocks dominates the expansion of the jet boundary. The shock detection algorithm us-ing CFD results was developed to reveal the relation between the shock waves and the jet boundary, and it was found that the cross-sectional jet shape becomes cross-shape. The key features observed in the numerical investigation were verified by the experimental results. The shock structure at the diagonal plane was in good agreement with the experimental schlieren images. Moreover, the cross-sections visualized by the Mie scattering method confirmed that the cross-section of the jet becomes cross-shape.

  • PDF

FDS 모델을 이용한 메탄올 풀 화재의 질량연소플럭스 예측 (Predicting the Mass Burning Flux of Methanol Pool Fires by Using FDS Model)

  • 김성찬
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.12-18
    • /
    • 2017
  • 본 연구는 FDS의 액체증발모델을 이용하여 메탄올 풀 화재의 질량연소플럭스를 예측하고 복사분율, 평균흡수계수와 같은 연료의 열적 물성값에 따른 영향을 평가하였다. 해석대상 풀의 직경은 5 cm에서 200 cm 사이이며 해석영역의 크기는 풀의 크기에 비례하여 구성하였다. 해석에 적용된 기준격자는 격자민감도 평가를 통해 결정되었으며 약 750,000개의 격자를 적용하였다. 메탄올 풀 화재에 대해 FDS 액체증발모델을 적용하여 계산된 질량연소플럭스는 해석대상 풀 직경에 따른 천이특성을 잘 나타냈으며 전체적으로 실험편차 내에서 기존 실험과 일치된 결과를 예측하였다. 질량연소플럭스는 복사분율 증가에 따라 증가하는 경향을 보였으며 풀의 직경이 작은 경우 평균흡수계수의 영향이 상대적으로 크게 나타났다.