• Title/Summary/Keyword: and 3-D finite element method

Search Result 1,337, Processing Time 0.022 seconds

The Elasto-Plastic Finite Element Analysis of Ductile Fracture in Shape Rolling (형상압연시 연성파괴의 탄소성 유한요소해석)

  • 원영목;오규환
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.72-80
    • /
    • 1996
  • During the shape rolling process the influence of reduction ration and taper of shape roller on deformation and limit of ductile fracture such as free surface cracks developing in the workpiece has been studied. The deformation behaviours were analyzed by the 3-dimensional elasto-pastic finite element method and the conditions of ductile fracture were determined from 3-dimensional elasto-plastic finite element method and modified Cockrogt-Latham criterion. The deformed geometry and prediction of ductile fracture by 3-dimensional elasto-plastic finite element method are compared with experimental results The calcuated results are in good agreements with experimental data. The analysis used in the study was found to be effective in predicting the shape rolling process.

  • PDF

Automatic Quadrilateral Mesh Generation for Large Deformation Finite Element Analysis (대변형 유한요소해석을 위한 요소망 자동 생성기법)

  • 김동준;최호준;장동환;임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.194-201
    • /
    • 2003
  • An automatic quadrilateral mesh generator for large deformation finite element analysis such as metal forming simulation was developed. The NURBS interpolation method is used for modeling arbitrary 2-D free surface. This mesh generation technique is the modified paving algorithm, which is an advancing front technique with element-by-element resolving method for paving boundary intersection problem. The mesh density for higher analysis accuracy and less analysis time can be easily controlled with high-density points, maximum and minimum element size. A couple of application to large deformation finite element analysis is given as an example, which shows versatility and applicability of the proposed approach and the developed mesh generator for large deformation finite element analysis.

Elastodynamic infinite elements based on modified Bessel shape functions, applicable in the finite element method

  • Kazakov, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.353-362
    • /
    • 2012
  • In this paper decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions and appropriate for Soil-Structure Interaction problems are described and discussed. These elements can be treated as a new form of the recently proposed Elastodynamic Infinite Elements with United Shape Functions (EIEUSF) infinite elements. The formulation of 2D horizontal type infinite elements (HIE) is demonstrated, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be formulated. It is demonstrated that the application of the elastodynamical infinite elements is the easier and appropriate way to achieve an adequate simulation including basic aspects of Soil-Structure Interaction. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite Element Method is explained in brief. Finally, a numerical example shows the computational efficiency of the proposed infinite elements.

Improvement of Element Stability using Adaptive Directional Reduced Integration and its Application to Rigid-Plastic Finite Element Method (적응성 선향저감적분법에 의한 요소의 안정성 향상과 강소성 유한요소해석에의 적용)

  • Park, K.;Lee, Y.K.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.32-41
    • /
    • 1995
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode and shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two-dimensional rigid-plastic finite element method using various type of elemenmts and numerical intergration schemes. As metal forming examples, upsetting and backward extrusion are taken for comparison among the methods: various element types and numerical integration schemes. Comparison is made in terms of stability and efficiency in element behavior and computational efficiency and a new scheme of adaptive directional reduced integration is introduced. As a result, the finite element computation has been stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

A Study on Elastic-Plastic Deformation and 3-D FEA for the Berkovich Nano-Indentation (베르코비치 나노인덴테이션에 대한 3차원 유한요소해석과 탄소성 변형에 관한 연구)

  • Yang Hyeon-Yun;Kim Ji-Soo;Yun Jon-Do;Cho Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.167-173
    • /
    • 2005
  • The Berkovich nano-indentation is an indentation test method analyzing mechanical properties of materials such as hardness and elastic modulus. The length scale of the penetration is measured in nanometers. Therefore, this method becomes widely useful for analyzing the mechanical property of thin film which can not be measured before. In this paper, comparing two results of the load-displacement curve obtained by the Berkovich nano-indentation and the 3-D finite element analysis, it was confirmed that the 3-D finite element analysis is useful. The phenomenon of pile-up and sink-in due to material properties was discussed by the finite element analysis.

Finite Element Analysis on Process Improvement of the Multi-Forming for the Motor-Case of an Automobile (자동차용 모터케이스 성형용 멀티포머의 공정개선에 관한 유한요소해석)

  • Kim H. J.;Bae W. B.;Cho J. R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.467-470
    • /
    • 2005
  • There are about 10 motors for tile actuator of the automation system in an auto-mobile recently. The performance of the motor-case is much related to the noise and the vibration of an auto-mobile Multi-Forming process is so much the better than existing deep-drawing or Multi-step forming by press by less cost, installation and staff. But there isn't the specific and general process design, so we aren't good at competition. So in the first step, I want to study about the core design for the multi-forming process. We can access by the elasto-plastic theory and the finite element method, and we use a commercial package of the Deform-2D and, Deform-3D which is based on three-dimensional elasto-plastic finite element, evaluated propriety oi the package. The evaluation of the package propriety was simulated by simple bending example. It was found the elasto-plastic theory was mostly in agreement with the simulation. We proposed that three type of section for the core and analyzed by finite element method (Deform-2D). We can get the best result with the ellipse type core. Then we apply the result of the preceding analysis to the finite element method (Deform-3D). In 3D-finite element analysis, we can get the result of 8/100mm-roundness. This result can help the improvement of the multi-forming process.

  • PDF

A Study on Orbital Forming Analysis of Automotive Hub Bearing using the Explicit Finite Element Method (외연적 유한요소법을 이용한 자동차 Hub Bearing의 Orbital Forming해석에 관한 연구)

  • Cho, Hyun-Jik;Koo, Jeong-Seo;Bae, Won-Rak;Lim, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • In this paper, the orbital forming analysis of an automotive hub bearing was studied to predict forming performances using the explicit finite element method. To find an efficient solution technique for the orbital forming, axisymmetric finite element models and 3D solid element models were solved and numerically compared. The time scaling and mass scaling techniques were introduced to reduce the excessive computational time caused by small element size in case of the explicit finite element method. It was found from the numerical simulations on the orbital forming that the axisymmetric element models showed the similar results to the 3D solid element models in forming loads whereas the deformations at the inner race of bearing were quite different. Finally the strains at the inner race of bearing and the forming forces to the peen were measured for the same product of the numerical model by test, and were compared with the 3D solid element results. It was founded that the test results were in good agreements with the numerical ones.

Damage detection technique for irregular continuum structures using wavelet transform and fuzzy inference system optimized by particle swarm optimization

  • Hamidian, Davood;Salajegheh, Eysa;Salajegheh, Javad
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.457-464
    • /
    • 2018
  • This paper presents a method for detecting damage in irregular 2D and 3D continuum structures based on combination of wavelet transform (WT) with fuzzy inference system (FIS) and particle swarm optimization (PSO). Many damage detection methods study regular structures. This method studies irregular structures and doesn't need response of healthy structures. First the damaged structure is analyzed with finite element methods, and damage response is obtained at the finite element points that have irregular distance, secondly the FIS, which is optimized by PSO is used to obtain responses at points, having equal distance by response at those points that previously obtained by the finite element methods. Then a 2D (for 2D continuum structures) or a 3D (for 3D continuum structures) matrix is performed by equal distance point response. Thirdly, by applying 2D or 3D wavelet transform on 2D or 3D matrix that previously obtained by FIS detail matrix coefficient of WT is obtained. It is shown that detail matrix coefficient can determine the damage zone of the structure by perturbation in the damaged area. In order to illustrate the capability of proposed method some examples are considered.

3-D Analysis of Core Material Effects of Motors on Torque and Iron Loss Characteristics

  • Kawase Yoshihiro;Yamaguchi Tadashi;Okouchi Toshinori;Nord Goran;Kanno Koki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.238-242
    • /
    • 2005
  • In this paper, a surface permanent magnet motor made of the Soft Magnetic Composites (SMC) is analysed using the 3-D finite element method. By comparing with the motor made of the silicon steel sheets, the usefulness of the SMC for the eddy current loss is clarified quantitatively.

Finite Element Analysis for Lower End Fitting using 3-D Solid Modeler (3-D 솔리드모델러를 이용한 원자료 핵연료 하단고정체의 유한요소 해석)

  • 이상순;홍현기;문연철;전경락
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.3-9
    • /
    • 2001
  • In this study, the geometric modeling has been conducted for the current lower end fitting and 2 candidates using three-dimensional solid modeler, Solidworks. Then, the three-dimensional stress analysis using the finite element method has been performed. The evaluation for the mechanical integrity of 2 candidates has been performed based on the stress distribution obtained from the finite element analysis.

  • PDF