• Title/Summary/Keyword: anchored bar

Search Result 27, Processing Time 0.026 seconds

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.

Evaluation on Anchorage Performance of 57mm Headed Bars in Exterior Beam-Column Joint under Cyclic Loading (반복하중을 받는 외부 보-기둥 접합부에 정착된 57mm 확대머리철근의 정착성능평가)

  • Jung, Hyung-Suk;Chung, Joo-Hong;Choi, Chang-Sik;Bae, Baek-IL;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.68-75
    • /
    • 2021
  • In this study, the anchoring performance of 57mm headed bars anchored at the external beam-column joint under cyclic loading was evaluated. A total of 6 external beam-column joint test specimens were planned, and anchorage performance was evaluated by setting concrete compressive strength, side covering thickness, lateral reinforcement ratio, and fracture type as major experimental variables. As result of cyclic loading test, it was found that the factors that had the greatest influence on the anchoring capacity of the large-diameter headed bar anchored at the joint were the side cover thickness and the transverse reinforcing bar. It was confirmed that the 57mm large-diameter headed bar anchored at the external beam-column joint showed sufficient anchoring capacity even under cyclic loading.

Development Strength of Headed Reinforcing Bars for Steel Fiber Reinforced Concrete by Pullout Test

  • Kim, Seunghun;Paek, Sungchol;Lee, Changyong;Yuk, Hyunwoong;Lee, Yongtaeg
    • Architectural research
    • /
    • v.20 no.4
    • /
    • pp.129-135
    • /
    • 2018
  • In order to compare the development performance of headed reinforcing bar and straight reinforcing bar in tension for steel fiber reinforced concrete (SFRC), pullout test of specimens with reinforcing bar which was anchored on simple beam perpendicularly was conducted. The experimental variables were steel fiber volume ratio ($V_{Rsf}$), concrete compressive strength, and existence of head. As the result of test, splitting failure of concrete in the development direction of reinforcing bar in most specimens was observed. For development detail of headed reinforcing deformation bar, specimens with 1% $V_{Rsf}$ showed approximately 63%~119% increase in pullout strength compare to specimens with 0% $V_{Rsf}$. Test result shows that SFRC is more effective in increasing pullout strength for headed reinforcing bars than increasing pullout strength of straight bars.

Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.651-661
    • /
    • 2017
  • This paper presents an experimental study of bond-slip behavior of reinforced lightweight aggregate concrete (LC) and normal weight concrete (NC) with embedded steel bar. Tests were conducted on tension-pull specimens that had cross-sectional dimension with a reinforcing bar embedded in the center section. The experimental variables include concrete strength (20, 40, and 60 MPa) and coarse aggregate type (normal-weight aggregate and reservoir sludge lightweight aggregate). The test results show that as concrete compressive strength increased, the magnitudes of the slip of the LC specimens were greater than those of the NC specimens. Moreover, the bond strength and stiffness approaches zero at the loaded end, or close to the central anchored point of the specimen. In addition, the proposed bond stress-slip equation can effectively estimate the behavior of bond stress and steel bar slipping.

Repeated Loading Tests of Reinforced Concrete Beams Containing Headed Shear Reinforcement (Headed Shear Bar를 사용한 콘크리트 보의 반복 하중 실험)

  • 김영훈;윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.512-517
    • /
    • 2003
  • The repeated loading responses of four shear-critical reinforced concrete beams, with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}C$ standard hooks, having free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups, with improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened, resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

  • PDF

Fragility assessment for electric cabinet in nuclear power plant using response surface methodology

  • Tran, Thanh-Tuan;Cao, Anh-Tuan;Nguyen, Thi-Hong-Xuyen;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.894-903
    • /
    • 2019
  • An approach for collapse risk assessment is proposed to evaluate the vulnerability of electric cabinet in nuclear power plants. The lognormal approaches, namely maximum likelihood estimation and linear regression, are introduced to establish the fragility curves. These two fragility analyses are applied for the numerical models of cabinets considering various boundary conditions, which are expressed by representing restrained and anchored models at the base. The models have been built and verified using the system identification (SI) technique. The fundamental frequency of the electric cabinet is sensitive because of many attached devices. To bypass this complex problem, the average spectral acceleration $S_{\bar{a}}$ in the range of period that cover the first mode period is chosen as an intensity measure on the fragility function. The nonlinear time history analyses for cabinet are conducted using a suite of 40 ground motions. The obtained curves with different approaches are compared, and the variability of risk assessment is evaluated for restrained and anchored models. The fragility curves obtained for anchored model are found to be closer each other, compared to the fragility curves for restrained model. It is also found that the support boundary conditions played a significant role in acceleration response of cabinet.

Headed Bar Anchorage of Exterior Beam Column Joints in Nuclear Power Plants (원전구조물의 외부 보기둥 접합부에서 철근 기계적 정착)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.42-45
    • /
    • 2006
  • This study investigated headed bar anchorage of exterior beam column joints in nuclear power plants. In nuclear power plant structures, anchorage of headed bar is recommended to satisfy ACI 349-01 App. B that are based on the Concrete Capacity Design (CCD) method. However, CCD method may lead to very conservative results for beam column joints where head is anchored within the diagonal strut and concrete is confined by transverse rebar. Compared with results of 5 joint specimens, the anchorage capacities calculated by ACI 349-01 are underestimated by 70-90%. Therefore, it is necessary to amend ACI 349-01 for the mechanical anchorage in beam column joints.

  • PDF

Strut-And-Tie Model for Headed Bar Anchored in Exterior Beam-Column Joint with Transverse Reinforcement (전단보강근이 배근된 외부 보기둥 접합부에 정착된 헤드 철근의 스트럿-타이 모델)

  • Chun, Sung-Chul;Hong, Sung-Gul;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.454-457
    • /
    • 2006
  • This study presents a strut-and-tie model for the development of headed bars in an exterior beam-column joint with transverse reinforcements. The tensile force of a headed bar is considered to be developed by head bearing together with bond along a bonded length as a partial embedment length. The model requires construction of struts with biaxially compressed nodal zones for head bearing and fan-shaped stress fields against neighboring nodal zones for bond stresses along the bonded length. Due to the existence of transverse reinforcements, the fan-shaped stress fields are divided into direct and indirect fan-shaped stress fields. A required development length and head size of a headed bar can be optimally designed by adjusting a proportion between a bond contribution and bearing contribution.

  • PDF

Mechanical Bar Anchorage of the PC Beam in Beam-Column Joint Using Plates and Bolts (지지대 및 제결볼트를 이용한 프리캐스트 콘크리트 골조구조의 보 하단 철근 정착공법 개발)

  • 유영찬;최근도;김긍환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.539-544
    • /
    • 2000
  • The purpose of this study is to develop the mechanical anchorage, namely MAB-BOP (Mechanical Anchorage of 90$^{\circ}$ Hooked Bars with BOlt nad Plate) of the beam-column joint in precast concrete framed structures. Six specimens simulating typical interior beam-column joints were tested to investigate the mechanical characteristics of MAB-BOP. Of primary interest was the measurement of the slip of the anchored bar. Th load-slip curve obtained from this test were used to compare the mechanical performances of the different anchoring methods. Based on the test results, it was found that MAB-BOP showed sufficient anchoring strength capacity compared to 90$^{\circ}$ hooked bar method. So, MAB-BOP can be used as the anchoring methods of the reinforcing bars in PC beam-column joint.

  • PDF

Failure Mechanism and Ultimate Strength of Headed Bar Anchored in Deep Beam Using Truss Models (트러스 모델을 이용한 춤이 깊은 보에 정착된 헤드 철근의 파괴 메커니즘과 극한 내력 해석)

  • Cheon, Sung-Chul;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.143-146
    • /
    • 2005
  • 최근 들어 90도 표준갈고리의 대안으로 정착판을 지니는 헤드 철근(headed bar)에 대한 관심이 높아지고 있다. 헤드 철근의 정착내력은, 정착판의 지압력과 위험단면에서 헤드까지 정착길이의 부착력으로 발현된다. 실제 구조물에서는 정착되는 부재의 재료 및 기하학적 물성에 의해 다양한 파괴가 발생된다. 따라서 헤드 철근의 정착내력은 단순히 지압력과 부착력의 합으로 산정될 수 없으며, 발생 가능한 모든 파괴양상을 고려한 최소 내력으로 결정되어야 한다. 헤드 철근의 정착내력을 산정하기 위한 기본적인 해석모델로, CCT 절점에 정착된 헤드 철근의 트러스 모델을 제안하였다. 제안된 트러스 모델의 파괴는 부착파괴와 콘크리트의 압축파괴로 구분되며, 재료 및 기하학적 물성에 의해 파괴 양상이 결정된다. 이러한 트러스 모델은 외부 보-기둥 접합부와 같이 보다 복잡한 부위에 정착된 헤드철근의 정착 기구를 설명하는데 활용될 수 있다.

  • PDF