• Title/Summary/Keyword: anchorage strength

검색결과 198건 처리시간 0.201초

Non-invasive steel haunch upgradation strategy for seismically deficient reinforced concrete exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.719-734
    • /
    • 2018
  • Prior to the introduction of modern seismic guidelines, it was a common practice to provide straight bar anchorage for beam bottom reinforcement of gravity load designed building. Exterior joints with straight bar anchorages for beam bottom reinforcements are susceptible to sudden anchorage failure under load reversals and hence require systematic seismic upgradation. Hence in the present study, an attempt is made to upgrade exterior beam-column sub-assemblage of a three storied gravity load designed (GLD) building with single steel haunch. Analytical formulations are presented for evaluating the haunch forces in single steel haunch retrofit. Influence of parameters that affect the efficacy and effectiveness of the single haunch retrofit are also discussed. The effectiveness of the single haunch retrofit for enhancing seismic performance of GLD beam-column specimen is evaluated through experimental investigation under reverse cyclic loading. The single steel haunch retrofit had succeeded in preventing the anchorage failure of beam bottom bars of GLD specimen, delaying the joint shear damage and partially directing the damage towards the beam. A remarkable improvement in the load carrying capacity of the upgraded GLD beam-column sub-assemblage is observed. Further, a tremendous improvement in the energy dissipation of about 2.63 times that of GLD specimen is observed in the case of upgraded GLD specimen. The study also underlines the efficacy of single steel haunch retrofit for seismic upgradation of deficient GLD structures.

Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage

  • Li, Yujie;Luo, Rong;Zhang, Qihua;Xiao, Guoqiang;Zhou, Liming;Zhang, Yuting
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.139-160
    • /
    • 2017
  • The bearing mechanism of tunnel-type anchorage (TTA) for suspension bridges is studied. Model tests are conducted using different shapes of plug bodies, which are circular column shape and circular truncated cone shape. The results show that the plug body of the latter shape possesses much larger bearing capacity, namely 4.48 times at elastic deformation stage and 4.54 times at failure stage compared to the former shape. Numerical simulation is then conducted to understand the mechanical and structural responses of plug body and surrounding rock mass. The mechanical parameters of the surrounding rock mass are firstly back-analyzed based on the monitoring data. The calculation laws of deformation and equivalent plastic strain show that the numerical simulation results are rational and provide subsequent mechanism analysis with an established basis. Afterwards, the bearing mechanism of TTA is studied. It is concluded that the plug body of circular truncated cone shape is able to take advantage of the material strength of the surrounding rock mass, which greatly enhances its bearing capacity. The ultimate bearing capacity of TTA, therefore, is concluded to be determined by the material strength of surrounding rock mass. Finally, recommendations for TTA design are proposed and discussed.

Application of a Mechanical Model for the Detailing of the End Anchorage Zone of Prestressed Concrete Members (프리스트레스 콘크리트 부재의 단부정착부의 배근상세를 위한 역학적 모델의 적용)

  • 강원호;방지환;김철희
    • Magazine of the Korea Concrete Institute
    • /
    • 제8권4호
    • /
    • pp.201-211
    • /
    • 1996
  • It is expected that recent development of the mechanical model will replace previous empirical methods of detailing. In this study, a mechanical model is proposed to analyze the behavior of the anchorage zone of prestressed concrete members. Main characteristics of the proposed model lies on its rational consideration of material properties, and concrete strength in biaxial stress state and that of local zone reinforced by spirals. Shear friction strength of concrete surrounding spirals are also considered. The results of' the proposed method as well as the known Strut-and-Tie method and nonlinear finite element analysis are compared with some typical experimental results. We get good agreement to the failure mode as well as the failure load from test results. And it can be shown that three dimentional failure mechanism, which cannot be expected by the method based on 2D analysis, can be explained by proposed model.

Flexural Behavior of Steel-Concrete Composite Beams Strengthened by Post Tension Method (포스트 텐션 공법으로 보강된 SC 합성보의 휨 거동)

  • Ryu, Soo-Hyun;Kim, Heui-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제14권3호
    • /
    • pp.186-195
    • /
    • 2010
  • This study has attempted to suggest a proper reinforcement method by strengthening unbonded post -tensioning through height of an anchorage hole, form of a saddle, and loading time point as parameters and evaluating the reinforcement method through a bending experiment. The result of this experiment indicated effects of reinforcement since the maximum strength ratio(the ratio of an experimental value to theoretical value) of SC composite beams before prestressed was 0.97 and after prestress were 1.00~1.21. As a result of analysis on displacement and strain, irrespective of height of an anchorage hole and loading time point, the D120-series specimen where an anchorage hole was installed on the neutral axis after reinforcement showed that its deflection continuously increased without sudden load reduction after maximum load and it stably behaved with relatively low strain of each part. In terms of reinforcement effects, the maximum strength of SCR-UD120 specimen prestressed after pre-loading was increased 1.72 times comparing to SC composite beams so SCR-UD120 specimen prestressed after pre-loading was shown to be the best.

Development Length of High-Strength Standard Hooked Bars (550MPa) in Nuclear Power Plant Structures (고강도철근(550MPa)의 원전구조물 적용을 위한 표준갈고리 정착설계)

  • Lee, Byung Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.99-100
    • /
    • 2018
  • Because of the congestion problems, the high-strength reinforcements are expected to be used in nuclear power plant structures in the near future. According to ACI 349-13, it is permitted to use the high-strength(550MPa) hooked bars in design of development length, but there is no special equation for high-strength bars. In order to reflect the anchorage capacity and behavior properties of high-strength bars with large-diameter(43 & 57mm), it is necessary to develope the new development length equation for large-size and high-strength bars.

  • PDF

Development Length of High-Strength Straight Bars (550MPa) in Nuclear Power Plant Structures (고강도철근(550MPa)의 원전구조물 적용을 위한 직선철근의 정착설계)

  • Lee, Byung Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.110-111
    • /
    • 2018
  • Because of the congestion problems, the high-strength reinforcements are expected to be used in nuclear power plant structures in the near future. According to ACI 349-13, it is permitted to use the high-strength(550MPa) straight bars in design of development length, but there is no special equation for high-strength bars. In order to reflect the anchorage capacity and behavior properties of high-strength straight bars with large-diameter(43 & 57mm), it is necessary to find the modified factor or develop the new development length equation for large-size and high-strength bars.

  • PDF

An Experimental Study on Flexural Performance Evaluation of RC Beams Strengthened with Anchored CFRP Plates (CFRP판을 단부정착한 RC보의 휨성능 개선에 관한 실험적 연구)

  • Kim, Hyung-Jin;Hong, Ki-Nam;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제10권4호
    • /
    • pp.167-174
    • /
    • 2006
  • The purpose of this paper is to analyse and compare experimentally flexural behavior of RC beams strengthened with CFRP plates by different methods, which are divided into three classes: externally-bonded without end anchorage, externally-bonded with end anchorages, and anchored after prestressing of CFRP plates. Test results show that the RC beams strengthened with end anchorages have the improvement of ductility and flexural performance evaluation including ultimate strength and deflection, compared with only external bonding. Especially, RC beams with prestressed and anchored CFRP plates increase ultimate strength and ductility significantly.

Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces (최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가)

  • 유승룡;김대훈
    • Journal of the Korea Concrete Institute
    • /
    • 제11권4호
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.

Comparative performance of seismically deficient exterior beam-column sub-assemblages of different design evolutions: A closer perspective

  • Kanchana Devi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.177-191
    • /
    • 2017
  • In the present study, exterior beam column sub-assemblages are designed in accordance with the codal stipulations prevailed at different times prior to the introduction of modern seismic provisions, viz., i) Gravity load designed with straight bar anchorage (SP1), ii) Gravity load designed with compression anchorage (SP1-D), iii) designed for seismic load but not detailed for ductility (SP2), and iv) designed for seismic load and detailed for ductility (SP3). Comparative seismic performance of these exterior beam-column sub-assemblages are evaluated through experimental investigations carried out under repeated reverse cyclic loading. Seismic performance parameters like load-displacement hysteresis behavior, energy dissipation, strength and stiffness degradation, and joint shear deformation of the specimens are evaluated. It is found from the experimental studies that with the evolution of the design methods, from gravity load designed to non-ductile and then to ductile detailed specimens, a marked improvement in damage resilience is observed. The gravity load designed specimens SP1 and SP1-D respectively dissipated only one-tenth and one-sixth of the energy dissipated by SP3. The specimen SP3 showcased tremendous improvement in the energy dissipation capacity of nearly 2.56 times that of SP2. Irrespective of the level of design and detailing, energy dissipation is finally manifested through the damage in the joint region. The present study underlines the seismic deficiency of beam-column sub-assemblages of different design evolutions and highlights the need for their strengthening/retrofit to make them fit for seismic event.

Reversed Cyclic Loading Tests on Precast Beam-Column Joints with Headed Reinforcement (프리캐스트 보-기둥 헤드철근 연결부 반복하중 실험)

  • Kim, In-Gyu;Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • 제15권3호
    • /
    • pp.369-376
    • /
    • 2003
  • One of the most complex reinforcement location in the precast building frame is the beam-column joint in a prefabricated construction. It is generally resulted from the vortical bars of column, anchorage bars of beam, and bars of hoop. Particularly the hooked anchorage bars of beam are confronted with hoop and main column bars. The headed reinforcement is considered to place them easily and to reduce the anchorage length in a precast construction. Reversed cyclic loading tests are performed on four beam-column specimens to evaluate the strength and behavior of beam to column and column to column connections. The result of test shows that the headed reinforcement has a similar performance than that of hooked reinforcement in a precast specimen with strong column and weak beam joints. The splice column joints which are used frequently in the domestic fields also show reliable behaviors in those tests with strong column and weak beam joints.