• Title/Summary/Keyword: anchor construction interval

Search Result 5, Processing Time 0.015 seconds

A Study on the Change of Slope Safety Factor according to the Anchor Construction Interval (앵커 시공 간격에 따른 비탈면 안전율 변화 연구)

  • Kim, Jinhwan;Lee, Jonghyun;Kwon, Oil;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.515-523
    • /
    • 2020
  • If the safety factor does not secure the safety factor suggested in the design standard at the slope design stage, the safety factor is secured by installing an anchor. Stability analysis is used to verify the effect of reinforcing the slope of the anchor, but in this process, most of the anchor construction intervals are assumed to be equal and analyzed. For economical and effective slope reinforcement, stability analysis is required by adjusting the anchor construction interval. In this study, the effect of the anchor construction interval on the change of the safety factor of the slope was identified. Stability analysis was performed by setting a virtual slope with two berms and different anchor construction intervals. As a result of the analysis, the stability of the slope is secured when the anchor spacing of the lower surface is narrowed and the anchor gaps of the upper and middle surfaces are wider than when anchors are installed at the same intervals on the upper, middle, and lower surfaces of the slope. The result was a 15% reduction in the amount of anchors. This means that, rather than reinforcing anchors at the same intervals, it is economical and effective to have an economical and effective reinforcement effect to vary the anchor construction intervals according to the slope characteristics.

A Parameter Study on the Shear Failure Behavior of Post-installed Set Anchor for Light Load (저하중용 후설치 세트앵커의 전단파괴거동에 관한 매개변수 연구)

  • Um, Chan-Hee;Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.55-63
    • /
    • 2015
  • Post-installed concrete set anchors are installed after the concrete hardened. These anchors increasing usage in development of construction equipment and flexible construction. The anchor loaded in shearing exhibits various failure modes such as steel failure, concrete failure, concrete pryout, depending on the shear strength of steel, the strength of concrete, edge distance and anchor interval, etc,. In this study, the objective is to investigate the effects of the variations like anchor embedment depth, edge distance and concrete strength on experimental and finite element analysis of shear failure behavior of post-installed concrete set anchor for light load embedded in concrete. The results of embedment depth experiments show that concrete strength has much affection on the shallow embedment depth. Concrete strength has no much affection with anchor interval and edge distance parameter and both experimental results occurred same failure mode. By comparing the experimental results that occurred steel failure mode show that as strong as concrete strength are the displacement results are small.

A Study on the Pull-out Strength of Bond Type Anchors (부착식 앵커의 인발강도에 관한 연구)

  • Seo, Seong Yeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • The use of post installed anchors with bond type has lately been increasing when it is necessary to repair, reinforce, or remodel structures. This method provides flexibility and simplicity for construction of structural members that require adhering or fixing. Meanwhile, strength evaluation of anchors with expansion type among post-installed anchors systems has nearly reached setting up stage like design code through continual experimental studies for the last ten years, but analyses or experimental studies on anchor system with bond type are not yet sufficient. Accordingly, the designers and builders of korea depend on foreign design codes since there are no exact domestic design code they could credit. In this study, the objectives are investigating the effects on pull-out strength of resin anchors embedded into plain concrete by pull-out experiment of resin anchors with variables such as anchor diameter, anchor interval, embedment depth and edge distance.

An Experimental Study on the Shear Strength of Chemical Anchors Embedded into Non Cracking Plain Concrete (비균열 무근콘크리트에 매입된 케미컬 앵커의 전단내력에 관한 실험적 연구)

  • Seo, Seong-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • The use of post installed anchors with adhesive type has lately been increasing when it is necessary to repair, reinforce, or remodel structures. This method provides flexibility and simplicity for construction of structural members that require adhering or fixing. Meanwhile, strength evaluation of anchors with expansion type among post installed anchors systems has nearly reached setting up stage like design code through continual experimental studies for the last ten years, but analyses or experimental studies on anchor system with adhesive type are not yet sufficient. Accordingly, the designers and builders of korea depend on foreign design codes since there are no exact domestic design code they could credit. In this study, the objectives are investigating the effects on adhesive strength of anchors embedded into plain concrete by shear experiments of anchors with variables such as edge distance, anchor interval, and load direction and supplying basic data for enactment of domestic design code.

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.