• Title/Summary/Keyword: anchor

Search Result 1,621, Processing Time 0.023 seconds

A Study on the Behaviour of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.89-97
    • /
    • 2008
  • A series of field tests were performed to investigate the behavior of jacket anchor and to evaluate the ultimate bond stress of jacket anchor. From twelve sets of field tests on the jacket anchor and general type ground anchor, it was observed that the pullout resistance of jacket anchor is significantly larger than that of the ground anchor and that the plastic deformation of jacket anchor is significantly smaller than that of general ground anchor at the same loading cycle. Especially in gravel layers, the jacket anchor provides more than 250% increase in ultimate resistance and more than 600% reduction in plastic deformation, compared with the general ground anchor. Finally, the relationship between the injection pressure and overburden pressure is proposed to determine the optimum injection pressure, based on additional field test results.

Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils

  • Zhang, Nan;Wang, Hao;Ma, Shuqi;Su, Huaizhi;Han, Shaoyang
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.197-207
    • /
    • 2022
  • The seismic holding behaviors of plate anchor embedded into submerged coarse-grained soils were investigated considering different anchor inclinations. The limit equilibrium method and the Pseudo-Dynamic Approach (PDA) were employed to calculate the inertia force of the soils within the failure rupture. In addition, assuming the permeability of coarse-grained soils was sufficiently large, the coefficient of hydrodynamic force applied on the inclined plate anchor is obtained through adopting the exact potential flow theory. Therefore, the seismic holding resistance was calculated as the combination of the inertia force and the hydrodynamic force within the failure rupture. The failure rupture can be developed due to the uplift loads, which was assumed to be an arc of a circle perpendicular to the anchor and inclines at (π/4 - φ/2). Then, the derived analytical solutions were evaluated by comparing the static breakout factor Nγ to the published experimental and analytical results. The influences of soil and wave properties on the plate anchor holding behavior are reported. Finally, the dynamic anchor holding coefficients Nγd, were reported to illustrate the anchor holding behaviors. Results show that the soil accelerations in x and z directions were both nonlinear. The amplifications of soil accelerations were more severe at lower normalized frequencies (ωH/V) compared to higher normalized frequencies. The coefficient of hydrodynamic force, C, of the plate anchor was found to be almost constant with anchor inclinations. Finally, the seismic anchor holding coefficient oscillated with the oscillation of the inertia force on the plate anchor.

An Experimental Study on Pullout Characteristics of Post-installed Set Anchor for Concrete under Edge Distance, Anchor Interval and Concrete Strength (연단거리, 앵커간격 및 콘크리트 강도에 따른 콘크리트용 후설치 세트앵커의 인발특성에 관한 실험적 연구)

  • Suth, Ratha;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2469-2475
    • /
    • 2014
  • In 1990s, with the increase of domestic building renovation but also increase the amount of anchor. The 45-degree cone failure theory has been used in concrete anchor bolts design, but the CCD (concrete capacity design) method was adopted as a new design method since 2000. However, the method has some problems because it is based on the experimental results of pre-installed concrete anchor bolts. In this study, the objective is to investigate the effects of anchor edge distance, anchor interval and concrete strength on pullout characteristics of post-installed concrete set anchor embedded in plain concrete.

Uplift capacity of horizontal anchor plate embedded near to the cohesionless slope by limit analysis

  • Bhattacharya, Paramita;Sahoo, Sagarika
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.701-714
    • /
    • 2017
  • The effect of nearby cohesionless sloping ground on the uplift capacity of horizontal strip plate anchor embedded in sand deposit with horizontal ground surface has been studied numerically. The numerical analysis has been carried out by using the lower bound theorem of limit analysis with finite elements and linear optimization. The results have been presented in the form of non-dimensional uplift capacity factor of anchor plate by changing its distance from the slope crest for different slope angles, embedment ratios and angles of soil internal friction. It has been found that the decrease in horizontal distance between the edge of the anchor plate and the slope crest causes a continuous decrease in uplift capacity of anchor plate. The optimum distance is that distance between slope crest and anchor plate below which uplift capacity of an anchor plate has been found to decrease with a decrease in normalized crest distance from the anchor plate in presence of nearby sloping ground. The normalized optimum distance between the slope crest and the anchor plate has been found to increase with an increase in slope angle, embedment ratio and soil internal friction angle.

Design of Rock-berm by Anchor Dragging Simulation using CEL Method (CEL기법을 이용한 앵커 끌림 시뮬레이션에 의한 Rock-berm 설계)

  • Shin, Mun-Beom;Park, Dong-Su;Seo, Young-kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.397-404
    • /
    • 2017
  • In this study, an anchor dragging simulation was performed using the CEL method to design a rock-berm, which is a protection method for submarine cables. In order to simulate an anchor drag, preliminary simulations were first performed to determine the initial anchor penetration depth, anchor drag velocity, drag angle, and distance between the anchor and rock-berm. Based on the preceding simulation results, a safe rock-berm design for protecting the submarine cables was simulated to calculate the anchor penetration depth by the anchor dragging. As a result, the penetration depth of the anchor was found to be shallower in a hard seabed, and the penetration depth was deeper in a soft seabed, the height of the rock-berm was determined according to the physical properties of the seabed.

Pullout Resistance Characteristics of the Wedge-shaped Ground Anchor (쐐기형 그라운드앵커의 인발 거동 특성)

  • Kim, Jung-Moo;Chung, Won-Yong;Yoon, Yong-Soo;Chung, Min-Kyu;Jang, Soon-Ho;Lee, Yong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1060-1064
    • /
    • 2010
  • Ground anchors are mostly used to improve the resistance capacity of retaining walls. The end of the anchor is connected to retaining wall through tendons and the forces in tendons are transferred to ground. In this study, we plan that the new anchor system increases the tension force in tendons and improves the pullout resistance characteristics of the system. In order to increase the pullout resistance capacity of existing anchor system, the new anchor system is made by attaching four steel sticks to the tip of anchor end. So the field test results showed that the pullout resistance capacity of the wedge-shaped ground anchor was acceptable to elastic displacement range.

  • PDF

Introduction of Optimized Design of Anchoring System through Design Modification of Pocket and Chain Compressor (설계 개선을 통한 선박의 계류 시스템 최적화 사례 소개)

  • Lee, Jae-Hoon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.55-62
    • /
    • 2011
  • Although the performance of the commercial vessel has been dramatically improved through innovations, there has been no big changes on the traditional anchoring method of commercial vessels, both on design and operation until now. In this paper, two cases of design modifications were introduced for optimized design of pocket type anchor handling, which resulted in improved performance of the vessel's anchoring. From the first time fully balanced type anchors were applied on vessels in Korean shipyard, main design problem on this application was that the anchor doesn't normally slide into the pocket when the anchor fluke is not in line with pocket, as the anchor freely rotates by the swivel on forerunner. In order to prevent the problem, swivel has been deleted on the forerunner to prevent anchor rotation until now, but this solution caused problems such as twist lock of anchor chain, restriction of windlass direction, etc. On this paper, one of the solution is introduced to overcome the design problem by tilting the hawse pipe to some extent, which makes anchor turned at the time anchor ring touches the pocket skirt and that it properly slides into the pocket. Secondly, one of the solution is introduced to overcome misalignment problem between anchor chain cable and roller of chain compressor, which has been frequently occurred, by modification of roller design.

  • PDF

Tensile Properties and Testing Method for Glass Fiber Reinforced Polymer Reinforcing bar (GFRP Rebar의 인장특성 및 시험법에 관한 연구)

  • Park Ji-Sun;You Young-Chan;Park Young-Hwan;Choi Ki-Sun;You Young-Jun;Kim Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.172-175
    • /
    • 2004
  • This study is to investigate the tensile properties of glass fiber reinforced polymer(GFRP) reinforcing bars with various kinds of anchor systems experimentally. Three types of anchor systems were examined: resin sleeve anchor adopted by CSA Standard, metal overlay anchor by ASTM Standards and wedge anchor normally used in prestressing tendons. Also, three different types of GFRP bars with different surface deformations were tested in this study. All test procedures including specimens preparation, test apparatus and measuring devices were made according to the recommendations of CSA Standard S806-02. From the test results, it was found that the highest tensile strength of GFRP bar was developed by resin sleeve anchor, and tensile strength of GFRP bar with CSA anchor system is $10\%$ higher than that with ASTM anchor system in the case of sand-coated GFRP bar.

  • PDF

Pullout resistance of concrete anchor block embedded in cohesionless soil

  • Khan, Abdul J.;Mostofa, Golam;Jadid, Rowshon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.675-688
    • /
    • 2017
  • The anchor block is a specially designed concrete member intended to withstand pullout or thrust forces from backfill material of an internally stabilized anchored earth retaining wall by passive resistance of soil in front of the block. This study presents small-scale laboratory experimental works to investigate the pullout capacity of a concrete anchor block embedded in air dry sand and located at different distances from yielding boundary wall. The experimental setup consists of a large tank made of fiberglass sheets and steel framing system. A series of tests was carried out in the tank to investigate the load-displacement behavior of anchor block. Experimental results are then compared with the theoretical approaches suggested by different researchers and codes. The appropriate placement of an anchor block and the passive resistance coefficient, which is multiplied by the passive resistance in front of the anchor block to obtain the pullout capacity of the anchor, were also studied.

A Study on the Control of Ship Maneuvering by the Simulation of Anchor Dredging (닻 운용 시뮬레이션에 의한 선체운동 제어에 관한 연구)

  • 윤순동
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.2
    • /
    • pp.9-15
    • /
    • 2002
  • Ship operators use anchor dredging for the collision avoidance or safety of ship handling in a harbour or narrow channel. This paper clarifies the technique of the anchor dredging known as a common sense for. the seafarers A mathematical model at low speed range is established for the estimation of ship motion under the assumed environment, simulate the advance speed , and turning ability under the anchor dredging or not. The results shows good agreement with the conventional seamanship and their experiences as follows. Ahead speed used the anchor dredging is slower(speed reduction ratio:40%) than the normal ahead speed and the stopping distance is shorter (distance reduction ratio:40%)than the normal ahead distance without the anchor dredging.. Turning speed used anchor dredging is slower(speed reduction ratio:72%)than the normal ahead speed and the tactical diameter is shorter(distance reduction ratio:24%)than the diameter by the normal turning without the anchor dredging.

  • PDF