• Title/Summary/Keyword: anatomy

Search Result 4,048, Processing Time 0.036 seconds

Ultrastructure of Spermatogenesis in the Testis of Paragonimus heterotremus

  • Uabundit, Nongnut;Kanla, Pipatphong;Puthiwat, Phongphithak;Arunyanart, Channarong;Chaiciwamongkol, Kowit;Maleewong, Wanchai;Intapan, Pewpan M.;Iamsaard, Sitthichai;Hipkaeo, Wiphawi
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.669-676
    • /
    • 2013
  • Lung fluke, Paragonimus heterotremus, is a flatworm causing pulmonary paragonimiasis in cats, dogs, and humans in Southeast Asia. We examined the ultrastructure of the testis of adult P. heterotremus with special attention to spermatogenesis and spermiogenesis using scanning and transmission electron microscopy. The full sequence of spermatogenesis and spermiogenesis, from the capsular basal lamina to the luminal surface, was demonstrated. The sequence comprises spermatogonia, spermatocytes with obvious nuclear synaptonemal complexes, spermatids, and eventual spermatozoa. Moreover, full steps of spermatid differentiation were shown which consisted of 1) early stage, 2) differentiation stage representing the flagella, intercentriolar body, basal body, striated rootlets, and electron dense nucleus of thread-like lamellar configuration, and 3) growing spermatid flagella. Detailed ultrastructure of 2 different types of spermatozoa was also shown in this study.

Alterations in hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus

  • Oh, Yun-Jung;Na, Jongju;Jeong, Ji-Heon;Park, Dae-Kyoon;Park, Kyung-Ho;Ko, Jeong-Sik;Kim, Duk-Soo
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.635-640
    • /
    • 2012
  • To understand the effects of HCN as potential mediators in the pathogenesis of epilepsy that evoke long-term impaired excitability; the present study was designed to elucidate whether the alterations of HCN expression induced by status epilepticus (SE) is responsible for epileptogenesis. Although HCN1 immunoreactivity was observed in the hippocampus, its immunoreactivities were enhanced at 12 hrs following SE. Although, HCN1 immunoreactivities were reduced in all the hippocampi at 2 weeks, a re-increase in the expression at 2-3 months following SE was observed. In contrast to HCN1, HCN 4 expressions were un-changed, although HCN2 immunoreactive neurons exhibited some changes following SE. Taken together, our findings suggest that altered expressions of HCN1 following SE may be mainly involved in the imbalances of neurotransmissions to hippocampal circuits; thus, it is proposed that HCN1 may play an important role in the epileptogenic period as a compensatory response.

Altered expression of adrenocorticotropic hormone in the epileptic gerbil hippocampus following spontaneous seizure

  • Oh, Yun-Jung;Kim, Heung-No;Jeong, Ji-Heon;Park, Dae-Kyoon;Park, Kyung-Ho;Ko, Jeong-Sik;Kim, Duk-Soo
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.80-85
    • /
    • 2013
  • We investigated the temporal alterations of adrenocorticotropic hormone (ACTH) immunoreactivity in the hippocampus after seizure onset. Expression of ACTH was observed within inter-neurons in the pre-seizure group of seizure sensitive gerbils, whereas its immunoreactivities were rarely detected in seizure resistant gerbil. Three hr after the seizure, ACTH immunoreac-tivity was significantly increased in interneurons within all hippocampal regions. On the basis of their localization and morphology through immunofluorescence staining, these cells were identified as $GABA_A$ ${\alpha}1$-containing interneurons. At the 12 hr postictal period, ACTH expression in these regions was down-regulated, in a similar manner to the pre-seizure group of gerbils. These findings support the increase in ACTH synthesis that contributes to a reduction of corticotrophin-releasing factor via the negative feedback system which in turn provides an opportunity to enhance the excitability of GABAergic interneurons. Therefore, ACTH may play an important role in the reduction of excitotoxicity in all hippocampal regions.

Appearance of osteoporosis in rat experimental autoimmune encephalomyelitis

  • Ahn, Meejung;Kang, Sohi;Park, Channam;Kim, Jeongtae;Jung, Kyungsook;Yang, Miyoung;Kim, Sung-Ho;Moon, Changjong;Shin, Taekyun
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.117-120
    • /
    • 2016
  • Experimental autoimmune encephalomyelitis (EAE) in Lewis rats is characterized by transient paralysis followed by recovery. To evaluate whether transient paralysis in EAE affects bone density, tibiae of EAE rats were morphologically investigated using micro-computed tomography and histology. The parameters of bone health were significantly reduced at the peak stage of EAE rats relative to those of controls (p < 0.05). The reduction of bone density was found to remain unchanged, even in the recovery stage. Collectively, the present data suggest that osteoporosis occurs in paralytic rats with monophasic EAE, possibly through the disuse of hindlimbs and/or autoimmune inflammation.

Effects of Adenoviral Gene Transduction on the Stemness of Human Bone Marrow Mesenchymal Stem Cells

  • Marasini, Subash;Chang, Da-Young;Jung, Jin-Hwa;Lee, Su-Jung;Cha, Hye Lim;Suh-Kim, Haeyoung;Kim, Sung-Soo
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.598-605
    • /
    • 2017
  • Human mesenchymal stem cells (MSCs) are currently being evaluated as a cell-based therapy for tissue injury and degenerative diseases. Recently, several methods have been suggested to further enhance the therapeutic functions of MSCs, including genetic modifications with tissue- and/or diseasespecific genes. The objective of this study was to examine the efficiency and stability of transduction using an adenoviral vector in human MSCs. Additionally, we aimed to assess the effects of transduction on the proliferation and multipotency of MSCs. The results indicate that MSCs can be transduced by adenoviruses in vitro, but high viral titers are necessary to achieve high efficiency. In addition, transduction at a higher multiplicity of infection (MOI) was associated with attenuated proliferation and senescence-like morphology. Furthermore, transduced MSCs showed a diminished capacity for adipogenic differentiation while retaining their potential to differentiate into osteocytes and chondrocytes. This work could contribute significantly to clinical trials of MSCs modified with therapeutic genes.

Factors Influencing Self-directed Learning Ability of Anatomy using Cadaver Dissection - Focusing on Beginning Nursing Students (시신 해부실습을 통한 해부학 교과목에서의 자기주도적 학습능력 영향요인 - 전공입문 간호대학생을 대상으로)

  • Seo, Yon Hee;Lee, Hyun Ju
    • Health Communication
    • /
    • v.13 no.2
    • /
    • pp.109-115
    • /
    • 2018
  • Background: The study is descriptive research study to investigate the self-directed learning ability to explore the facts that influence of anatomy using cadaver dissection beginning nursing students. Methods: A descriptive research design was used. The data was collected from 31st May to 7 June, 2016. The participants were total 121 first-year nursing students in C University. This anatomy practicum course was composed of three session, and each session was composed of 3hours, 60minutes of body structure and anatomy lecture, 90 minutes of cadaver dissection, and 30minutes of summary. Results: The results of the study showed that satisfaction with cadaver dissection was statistically significant in the usefulness in connection with the major of nursing (r=.543, P<.001), educational understanding (r=.465, p<.001), and nursing learning motivation (r=.517, p<.001). As the nursing learning motivation increased, self-directed learning ability increased. Also nursing learning motivation influenced self-directed learning (${\beta}=0.266$, p<.01). Conclusion: It is necessary to develop a program that can link theoretical education with practicum education of anatomy using cadaver dissection for efficient learning of the anatomy major courses of nursing students.