• Title/Summary/Keyword: anatase titania

Search Result 69, Processing Time 0.022 seconds

Structural Changes of Hydrous Titania by Heat-Treatment (열처리에 의한 함수 티타니아의 구조적 변화)

  • Choe, Byeong-Cheol;Lee, Mun-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.477-482
    • /
    • 1994
  • Structural changes of hydrous titania by heat-treatment was investigated with XRD, TEM, FT-IR, Rarnan spectral analyses. The hydrous titania was derived from a mixed solution of titanium tetrachloride and hydrogen peroxide at $30^{\circ}C$ and pH of 9.0. The precipitate was an anatase form of titania with less-developed crystalline structure. With increasing annealing temperature ranglng up to $700^{\circ}C$, the crystallinity of anatase increased, and the particles were grown at high temperature. The rutile form of titania was developed from the anatase at $700^{\circ}C$.

  • PDF

Preparation and Characterization of Cerium Doped Titanium Dioxide Nano Powder for Photocatalyst

  • Ndinda, Euphracia;Park, Hyun;Kim, Kyung Nam
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.33-36
    • /
    • 2014
  • This study was aimed at synthesizing and characterizing cerium-doped titania. Cerium-doped anatase titania powders were prepared by sol-gel process, with ammonium (IV) nitrate and titanium (IV) butoxide as the raw materials. The characteristics of pure $TiO_2$ and cerium-doped $TiO_2$ were investigated by XRD, TG/DTA, FE-SEM, and UV-vis spectroscopy. The results of this study show that anatase type of $TiO_2$ was obtained in as-prepared and calcined $TiO_2$ and Ce-$TiO_2$ powder. A DTA curve was also observed as the crystallization temperature decreased with increasing cerium contents. We found that the crystallite size of the obtained anatase particles decreased from 55 nm to 25 nm and the particle size decreased with increasing cerium contents. Moreover, UV-vis spectra showed that anatase titania powders with various cerium contents effectively extend the light absorption properties to the visible region.

PREPARATION OF CERIUM DOPED TITANIA NANO POWDER FOR PHOTOCATALYST

  • Musyoki, Euphracia Ndinda;Kim, Kyung-Nam
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.257-257
    • /
    • 2012
  • Cerium doped anatase titania powders were prepared by sol-gel process, with ammonium (IV) nitrate and Titanium (IV) butoxide as the raw materials. The characteristics of anatase $TiO_2$ and cerium doped $TiO_2$ were investigated by XRD, DTA, FE-SEM and UV/Vis spectroscopy. Research results indicated that XRD data characteristic diffraction peaks of anatase phase and also showed that cerium phase was not observed. Moreover XRD and DTA results imply that the addition of cerium to titania modifies the mechanism of formation of the titania phases.

  • PDF

Controlled synthesis of mesoporous codoped titania nanoparticles and their photocatalytic activity

  • Mathis, John E.;Kidder, Michelle K.;Li, Yunchao;Zhang, Jinshui;Paranthaman, M.P.
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.157-165
    • /
    • 2016
  • The photocatalytic (PC) activity of anatase titania nanoparticles can be improved through codoping with transition metals and nitrogen. In addition, the PC activity can also be improved by creating monodisperse, mesoporous nanoparticles of titania. The question naturally arose as to whether combining these two characteristics would result in further improvement in the PC activity or not. Herein, we describe the synthesis and photocatalytic characteristics of codoped, monodisperse anatase titania. The transition metals tested in the polydisperse and the monodisperse forms were Mn, Co, Ni, and Cu. In each case, it was found that the monodisperse version had a higher PC activity compared to the corresponding polydisperse version.

Effect of Hot Water and Heat Treatment on the Apatite-forming Ability of Titania Films Formed on Titanium Metal via Anodic Oxidation in Acetic Acid Solutions

  • Cui, Xinyu;Cui, Xinyu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile.The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  • PDF

Nitrogen Doping in Polycrystalline Anatase TiO2 Ceramics by Atmosphere Controlled Firing

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.374-386
    • /
    • 2019
  • A process for nitrogen doping of TiO2 ceramics was developed, whereby polycrystalline titania particles were prepared at 450-1000℃ with variation of the firing schedule under N2 atmosphere. The effect of nitrogen doping on the polycrystallites was investigated by X-ray diffraction (XRD) and Raman analysis. The microstructure of the TiO2 ceramics changed with variation of the firing temperature and the firing atmosphere (N2 or O2). The microstructural changes in the nitrogen-doped TiO2 ceramics were closely related to changes in the Raman spectra. Within the evaluated temperature range, the nitrogen-doped titania ceramics comprised anatase and/or rutile phases, similar to those of titania ceramics fired in air. Infiltration of nitrogen gas into the titania ceramics was analyzed by Raman spectroscopy and XRD analysis, showing a considerable change in the profiles of the N2-doped TiO2 ceramics compared with those of the TiO2 ceramics fired under O2 atmosphere. The nitrogen doping in the anatase phase may produce active sites for photocatalysis in the visible and ultraviolet regions.

Tunable doping sites and the impacts in photocatalysis of W-N codoped anatase TiO2

  • Choe, Hui-Chae;Sin, Dong-Bin;Yeo, Byeong-Cheol;Song, Tae-Seop;Han, Sang-Su;Park, No-Jeong;Kim, Seung-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.246-246
    • /
    • 2016
  • Tungsten-nitrogen (W-N) co-doping has been known to enhance the photocatalytic activity of anatase titania nanoparticles by utilizing visible light. The doping effects are, however, largely dependent on calcination or annealing conditions, and thus, the massive production of quality-controlled photocatalysts still remains a challenge. Using density functional theory (DFT) thermodynamics and time-dependent DFT (TDDFT) computations, we investigate the atomic structures of N doping and W-N co-doping in anatase titania, as well as the effect of the thermal processing conditions. We find that W and N dopants predominantly constitute two complex structures: an N interstitial site near a Ti vacancy in the triple charge state and the simultaneous substitutions of Ti by W and the nearest O by N. The latter case induces highly localized shallow in-gap levels near the conduction band minimum (CBM) and the valence band maximum (VBM), whereas the defect complex yielded deep levels (1.9 eV above the VBM). Electronic structures suggest that substitutions of Ti by W and the nearest O by N improves the photocatalytic activity of anatase by band gap narrowing, while defective structure degrades the activity by an in-gap state-assisted electron-hole recombination, which explains the experimentally observed deep level-related photon absorption. Through the real-time propagation of TDDFT (rtp-TDDFT), we demonstrate that the presence of defective structure attracts excited electrons from the conduction band to a localized in-gap state within a much shorter time than the flat band lifetime of titania. Based on these results, we suggest that calcination under N-rich and O-poor conditions is desirable to eliminate the deep-level states to improve photocatalysis.

  • PDF

Preparation of Nanophase Titania Film by Plasma Spraying

  • Zhu, Yingchun;Huang, Minhui
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.23-26
    • /
    • 1997
  • Nanophase titania film was obtained by plasma spraying. The structure of titania film was investigated with transmission electron microscopy (TEM). It was found taht the film was composed of grains with mean particle size of 15nm. The crystal structure of nanophase titania film was found to be anatase phase by electron diffraction.

  • PDF

Fabrication and characterization of solution processable organosilane-modified colloidal titania nanoparticles and silica-titania hybrid films

  • Kang, Dong Jun;Park, Go Un;Lee, Hyeon Hwa;Ahn, Myeong Sang;Park, Hyo Yeol
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.78-81
    • /
    • 2012
  • Colloidal titania nanoparticles were synthesized by a simple sol-gel process. The obtained nanoparticles showed high crystallinity and were of the anatase type. These crystalline colloidal titania nanoparticles were organically modified using methyl- and glycidyl-grafted silanes in order to enhance their stability and solution processability. The stabilized colloidal titania nanoparticles could be dispersed homogeneously without aggregation and converted into silica-titania hybrid films with the heterogeneous Si-O-Ti bonds by a low-temperature solution process. The fabricated silica-titania hybrid films showed high transparency (~ 90%) in the visible range, and low RMS roughness (<1 nm). Therefore, the organosilane-modified crystalline colloidal titania nanoparticles can be used in solution-processable functional coatings for electro-optical devices.