• Title/Summary/Keyword: anatase structure

Search Result 201, Processing Time 0.033 seconds

Crystal Structure and Superhydrophilic Property of $TiO_2$ Thin Film Coated on Si(100) Wafer (Si(100) 기판 위에 코팅된 $TiO_2$박막의 결정구조와 초친수 특성)

  • 김사라;조운조;박재관;이용철
    • Korean Journal of Crystallography
    • /
    • v.12 no.3
    • /
    • pp.177-181
    • /
    • 2001
  • We have studied superhydrophilic properties of TiO₂thin films in relation with those crystal structures due to the heat treatments. Thin films were fabricated on Si (100) wafers using a conventional Sol-Gel method. Following drying and sintering processes, TiO₂film had an anatase phase with additional heat treatment at 500℃, an rutile phase at 1000℃, and a mixture of anatase and rutile phase at 750℃. All these films got hydrophilic even without any UV illumination. Especially the sample treated at 750℃ had a superhydrophilic contact angle of 5°. We suggested that the superhydrophilic films should have a mixture of anatase and rutile phase for the best performance. The hydrophilic TiO₂films were slowly degraded into the hydrophobic state in the dark room but quickly recovered back with les than 1 hour of UV illumination.

  • PDF

Heterojunction Quantum Dot Solar Cells Based on Vertically Growth TiO2 Anatase Nanorod Arrays with Improved Charge Collection Property

  • Chung, Hyun Suk;Han, Gill Sang;Park, So Yeon;Lee, Dong Geon;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.466.2-466.2
    • /
    • 2014
  • The Quantum dot (QD) solar cells have been under active research due to their high light harvesting efficiencies and low fabrication cost. In spite of these advantages, there have been some problems on the charge collection due to the limitation of the diffusion length. The modification of advanced nanostructure is capable of solving the charge collection problem by increasing diffusion length of electron. One dimensional nanomaterials such as nanorods, nanowires, and nanotubes may enhance charge collection efficiency in QD solar cells. In this study, we synthesized $TiO_2$ anatase nanorod arrays with length of 200 nm by two-step sol-gel method. The morphology and crystal structure for the nanorod were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The anatase nanorods are single-crystalline and possess preferred orientation along with (001) direction. The photovoltaic properties for the heterojunction structure QD solar cells based on the anatase nanorod were also characterized. Compared with conventional $TiO_2$ nanoparticle based QD solar cells, these nanostructure solar cells exhibited better charge collection properties due to long life time measured by transient open circuit studies. Our findings demonstrate that the single crystalline anatase nanorod arrays are promising charge transport semiconductors for heterojunction QD solar cells.

  • PDF

Formation Mechanisms of TiO2 Layer by Electrochemical Method (전기화학적 방법에 의한 TiO2 피막의 생성기구)

  • O, Han-Jun;Lee, Jong-Ho;Jang, Jae-Myeong;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.482-487
    • /
    • 2002
  • A $TiO_2$ film for photocatalyst was prepared by anodic oxidation at 180V in acidic electrolyte and film formation mechanism was studied. The major part of anodic $TiO_2$ film consisted of anatase type structure and surface morphology exhibited a porous cell structure. The thickness growth rate of the oxide film with anodization time revealed two-stage slope corresponds to the surface morphology between anodic films. The growth of pores on cell structure and the growth rate of film with two-stage slope are related to the constant formation rate of the $TiO_2$ layer.

Effect of Particle Size and Structure of TiO2 Semiconductor on Photoelectronic Efficiency of Dye-sensitized Solar Cell (TiO2 나노 입자의 크기와 결정 구조가 염료감응형 태양전지의 광전 효율에 미치는 영향)

  • Lee, Hyeonju;Park, No-Kuk;Lee, Tae Jin;Han, Gi Bo;Kang, Misook
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.22-29
    • /
    • 2013
  • A comparison of photo-efficiency on dye-sensitized solar cells (DSCs) assembled by using $TiO_2$ materials with different structures and crystallite sizes were investigated in this study. The size and structure of $TiO_2$ have been controlled by pHs and calcination temperatures using solvothermal and sol-gel methods, respectively. Six types of $TiO_2$ samples are obtained; 8.9, 12.8, and 20.2 nm sized $TiO_2$ particles, and the other types using sol-gel method were anatase-rutile mixtures on the structure. The highest photo-efficiency which is remarkable result reached to 8.6% over DSC assembled by anatase $TiO_2$ with 20.2 nm particle size.

Synthesis and Photo Catalytic Activity of 10 wt%, 20 wt%Li-TiO2 Composite Powders (10 wt%, 20 wt%Li-TiO2 복합분말의 합성과 광촉매 활성평가)

  • Kim, Hyeong-Chul;Han, Jae-Kil
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.33-37
    • /
    • 2016
  • 10 wt.% and 20 wt.%$Li-TiO_2$ composite powders are synthesized by a sol-gel method using titanium isopropoxide and $Li_2CO_3$ as precursors. The as-received amorphous 10 wt.%$Li-TiO_2$ composite powders crystallize into the anatase-type crystal structure upon calcination at $450^{\circ}C$, which then changes to the rutile phase at $750^{\circ}C$. The asreceived 20 wt%$Li-TiO_2$ composite powders, on the other hand, crystallize into the anatase-type structure. As the calcination temperature increases, the anatase $TiO_2$ phase gets transformed to the $LiTiO_2$ phase. The peaks for the samples obtained after calcination at $900^{\circ}C$ mainly exhibit the $LiTiO_2$ and $Li_2TiO_3$ phases. For a comparison of the photocatalytic activity, 10 wt.% and 20 wt.% $Li-TiO_2$ composite powders calcined at $450^{\circ}C$, $600^{\circ}C$, and $750^{\circ}C$ are used. The 20 wt.%$Li-TiO_2$ composite powders calcined at $600^{\circ}C$ show excellent efficiency for the removal of methylorange.

Preparation of Carbon-Coated $TiO_2$ at Different Heat Treatment Temperatures and Their Photoactivity

  • Chen, Ming-Liang;Bae, Jang-Soon;Oh, Won-Chun
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.259-265
    • /
    • 2006
  • Carbon-coated $TiO_2$ was prepared by $CCl_4$ solvent mixing method with the different heat treated temperatures (HTTs). Since the carbon layers derived from pitch on the $TiO_2$ particles were porous, the carbon-coated $TiO_2$ sample series showed a good adsorptivity. The values of BET surface areas measured were shown independently on the HTTs. The surface states by SEM present to the characterization of porous texture on the carbon-coated $TiO_2$ sample and carbon distributions on the surfaces. From XRD data, PT700 and PT750 were shown the X-ray diffraction patterns of the anatase $TiO_2$, but PT800 and PT850 were kept anatase-type structure even after heating at $800^{\circ}C$, though small amount of the rutile-type structure appears. The results of EDX microanalyses were observed for each sample show the spectra corresponding to almost all samples similar to C, O and Ti elements with an increase of HTTs. Finally, the excellent photoactivity of carbon-coated $TiO_2$ (especially, PT700 and PT750) could be attributed to the homogeneous coated carbon on the external surface and the structural anatase phase.

  • PDF

A New Nanohybrid Photocatalyst between Anatase (TiO2) and Layered Titanate

  • Lee, Hyun-Cheol;Jeong, Hyun;Oh, Jae-Min;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.477-480
    • /
    • 2002
  • A new microporous TiO2-pillared layered titanate has been successfully prepared by hybridizing the exfoliated titanate with the anatase TiO2 nano-sol. According to the X-ray diffraction analysis and N2 adsorption-desorption isotherms, the TiO2-pillared layered titanate showed a pillar height of ~2 nm with a high surface area of ~460 m2/g and a pore size of ~0.95 nm, indicating that a microporous pillar structure is formed. Its photocatalytic activity was evaluated by measuring the photodegradation rate of 4-chlorophenol during irradiation of catalyst suspensions in an aqueous solution. An enhancement in activity of ca. 170% was obtained for TiO2-pillared layered titanate compared to that of the pristine compound such as layered cesium titanate.

Structural Properties of TiO₂ Films Grown by Pulsed Laser Deposition

  • 윤하섭;김성규;임훙선
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.640-643
    • /
    • 1997
  • Pure titanium dioxide $(TiO_2)$ films were prepared by pulsed laser deposition on a single crystal Si(100) substrate. We have investigated the growth of crystalline titanium dioxide films with respect to substrate temperature and ambient oxygen pressure. The structural properties of the films were analyzed by X-ray diffraction. We found that the anatase as well as the rutile phases could be formed from the original rutile phase of the target $TiO_2$. At 0.75 torr of ambient oxygen pressure, the structure of $TiO_2$ film was amorphous at room temperature, anatase between 300 and 600 ℃, a mixture of anatase and rutile between 700 and 800 ℃, and only rutile at 900 ℃ and above. However, at a low ambient oxygen pressure, the rutile phase became dominant; the only rutile phase was obtained at the ambient oxygen pressure of 0.01 torr and the substrate temperature of 800 ℃. Therefore, the film structures were largely influenced by substrate temperature and ambient oxygen pressure.

Effect on TENG Performance by Phase Control of TiOx Nanoparticles

  • Huynh, Nghia Dinh;Park, Hyun-Woo;Chung, Kwun-Bum;Choi, Dukhyun
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.365-370
    • /
    • 2018
  • One of the critical parameters to improve the output power for triboelectric nanogenerators (TENGs) is the surface charge density. In this work, we modify the tribo-material of TENG by introducing the $TiO_x$ embedded Polydimethylsiloxane (PDMS) in anatase and rutile phase. The effect of dielectric constant and electronic structure of the $TiO_x$ on the capacitance of TENG and the output power as well are discussed. The surface charge density is increased as the control of the dielectric constant in difference weight percent of $TiO_x$ and PDMS. As the results of that, the 5% $TiO_x$ rutile phase and 7% $TiO_x$ anatase phase embedded PDMS exhibit the highest TENG output. The peak value of voltage/current obtained from $TiO_x$ rutile and anatase phase are ${\sim}180V/8.2{\mu}A$ and $211.6V/8.7{\mu}A$, respectively, at the external force of 5 N and working frequency of 5 Hz, which gives over 12-fold and 15-fold power enhancement compared with the TENG based on the pristine PDMS film. This study provides a better understanding for TENG performance enhancement from the materials view.

Tunable doping sites and the impacts in photocatalysis of W-N codoped anatase TiO2

  • Choe, Hui-Chae;Sin, Dong-Bin;Yeo, Byeong-Cheol;Song, Tae-Seop;Han, Sang-Su;Park, No-Jeong;Kim, Seung-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.246-246
    • /
    • 2016
  • Tungsten-nitrogen (W-N) co-doping has been known to enhance the photocatalytic activity of anatase titania nanoparticles by utilizing visible light. The doping effects are, however, largely dependent on calcination or annealing conditions, and thus, the massive production of quality-controlled photocatalysts still remains a challenge. Using density functional theory (DFT) thermodynamics and time-dependent DFT (TDDFT) computations, we investigate the atomic structures of N doping and W-N co-doping in anatase titania, as well as the effect of the thermal processing conditions. We find that W and N dopants predominantly constitute two complex structures: an N interstitial site near a Ti vacancy in the triple charge state and the simultaneous substitutions of Ti by W and the nearest O by N. The latter case induces highly localized shallow in-gap levels near the conduction band minimum (CBM) and the valence band maximum (VBM), whereas the defect complex yielded deep levels (1.9 eV above the VBM). Electronic structures suggest that substitutions of Ti by W and the nearest O by N improves the photocatalytic activity of anatase by band gap narrowing, while defective structure degrades the activity by an in-gap state-assisted electron-hole recombination, which explains the experimentally observed deep level-related photon absorption. Through the real-time propagation of TDDFT (rtp-TDDFT), we demonstrate that the presence of defective structure attracts excited electrons from the conduction band to a localized in-gap state within a much shorter time than the flat band lifetime of titania. Based on these results, we suggest that calcination under N-rich and O-poor conditions is desirable to eliminate the deep-level states to improve photocatalysis.

  • PDF