• Title/Summary/Keyword: analyze of LCS

Search Result 5, Processing Time 0.02 seconds

Some Symmetric Properties on (LCS)n-manifolds

  • Venkatesha, Venkatesha;Naveen Kumar, Rahuthanahalli Thimmegowda
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.149-156
    • /
    • 2015
  • We analyze the $(LCS)_n$-manifolds endowed with some symmetric properties, focusing on Ricci tensor and the 1-form ${\gamma}$. We study some properties of special Weakly Ricci-Symmetric $(LCS)_n$-manifolds and also shown that Weakly ${\phi}$-Ricci Symmetric $(LCS)_n$-manifold is an ${\eta}$-Einstein manifold.

New laminate constitutive equations for analysing the mechanical behavior of anisotropic plates and shells

  • Mbangue Nzengwa Ekmon;Ngatcha Ndengna Arno Roland;Ngouanom Gnidakouong Joel Renaud;Nkongho Anyi Joseph;Nzengwa Robert
    • Computers and Concrete
    • /
    • v.34 no.5
    • /
    • pp.591-609
    • /
    • 2024
  • Two novel laminate constitutive equations (LCE) for the static analysis of anisotropic shells are presented and implemented in this work. The LCE, developed for both two-dimensional (2D) and three-dimensional (3D) analysis, are more general than those obtained using the Kirchhoff-Love (K-L) equations, Reissner-Minddlin (R-M) type models, refined 2D/3D models, and some general anisotropic doubly-curved shell theories. Our study presents a 2D LCE model that accounts for classical mechanical couplings based on previous models plus additional couplings including extensional-twisting-shearing, extensional-twisting, Gauss bending-twisting-shearing, and Gauss bending-shearing mechanical couplings related to the third fundamental, or Gauss tensor. Moreover, the developed 3D LCE model accounts for all 2D mechanical couplings cited above plus additional mechanical couplings due to the section warping tensor, which arises from the stretching-through-the-thickness variable. These mechanical couplings are pertinent to the optimal design of a composite and are often disregarded in various static and dynamic analysis studies. Neglecting these new mechanical couplings in the design and analysis of laminated composite shells (LCS) can result in significant errors, from both physical and mechanical viewpoint. As such, we recommend employing new complete constitutive relations that integrate these pertinent mechanical couplings for the aforementioned study. Based on our analysis of the impact of additional couplings, we have developed several mathematical formulations that address several challenges encountered in laminated shell theory. As we increase the shell's thickness ratio, our research examines the effects of these couplings on mechanical behavior, buckling shape, critical buckling pressure, and failure analysis through computational modelling and various tests. The examination of the thickness ratio of composite shells illustrates the contrast between our newly developed LCE and some existing LCE as the shells increase in thickness.

Development of Power Energy Management System for Ships including Energy Saving of Separated Load Systems (개별 부하 시스템의 에너지 절감을 포함한 선박 전력 에너지 관리 시스템 개발)

  • Kang, Young-Min;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.131-139
    • /
    • 2018
  • Many ship researches have been carried out in connection with the fourth revolution, one of which focuses on EMS(energy management system). The EMS is referred to as systems for managing the energy of ships and include various systems. In this paper, we analyze the energy saving field in ship and propose a ship power energy management system including individual load control systems that can save energy in the engine room. EMS includes individual load control systems of PCS (Pump Control System), ERFCS (Engine Room Fan Control System), LCS (Load Control System), HVACS (Heating, Ventilation, Air conditioning Control System). Proposed EMS primarily conserves energy in the individual load systems of the engine room. Secondly, the integrated monitoring and control system is used to control the power generation system and the power load system to save energy.

An Analysis on Service Usage of Traffic Information on the Expressway (고속도로 교통정보 서비스에 대한 이용실태 분석)

  • Oh, Dong-Seob;Oh, Young-Tae;Jo, Soon-Gee;Hong, Eun-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.5
    • /
    • pp.12-25
    • /
    • 2009
  • The purpose of this study is to identify and analyze drivers' attitude related to usage of traffic information and traffic management service. A sample survey on Seohaeanseon Expressway(15), Gyeongbu Experssway(1), Youngdong Expressway(50) was conducted to analyze drivers' attitude ; sample size is 304 with 95% of confidence level and ${\pm}3.6%$ of sampling error. The analysis lists of drivers' attitude are usage of traffic information, awareness about information dissemination devices, and awareness about traffic control information related to LCS or RWIS. The results of this study is that drivers want pre-trip information, voice-based Hi-pass OBU, and fast incident management. According to the IPA, KEC's main consideration is a traffic flow improvement.

  • PDF

The Analysis of Potential Reduction of CO2 Emission In Soil and Vegetation due to Land use Change (토지이용변화에 따른 식생 및 토양의 이산화탄소 저감잠재량 분석)

  • Lee, Dong-Kun;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Land Use Changes (LUCs) have effects on greenhouse gas emissions and carbon stocks in soil and vegetation. Therefore, predictions for LUC are very important for achieving quantitative targets of $CO_2$ reduction rates. Some research exists on carbon fluxes and carbon cycles to estimate carbon stocks in terrestrial ecosystems in Korea. However, these researches have limitations in terms of helping us understand future potential reductions of $CO_2$ that reflect the influence of LUC. The aim of this study is to analyze the reduction levels of $CO_2$ emissions while considering LUC scenarios that effect carbon fluxes for LCS basic study in the year 2030. In this study, a common approach to model the effects of LUC on carbon stocks is the use of CA-Markov technical process with LUC patterns in the past. Potential reduction of $CO_2$ is calculated by change of land use that contains different soil organic carbon, each land use type, and biomass in vegetation. An IPCC analytical method of natural carbon sink and coefficient results from previous study in Korea is used as a calculation method for potential reduction of $CO_2$. As a result, 12,419 KtC will be reduced annually, which is 8.3% percent of 2005 $CO_2$ emissions in Korea. This will result in 3,226 hundred million won of economic efficiency. In conclusion, conservation of natural carbon sinks is necessary even if the amount of potential reduction change is little.