• 제목/요약/키워드: analytics

검색결과 738건 처리시간 0.024초

울음소리의 주파수 대역폭 분석을 이용한 소아호흡기 질환 진단에 관한 연구 (A Study on Infant Respiratory Diseases Diagnosis using Frequency Bandwidth Analysis of Crying Waveform)

  • 김봉현;조동욱
    • 한국통신학회논문지
    • /
    • 제33권12B호
    • /
    • pp.1123-1130
    • /
    • 2008
  • 출산율, 결흔율 감소 및 이혼을 증가 등의 사회적 현상으로 인해 태어나면서부터 건강에 대한 관심이 증대되고 있는 실정이다. 특히 의사 표현 능력이 부족한 소아의 질환 진단은 직접 내원해서 진단을 받아야 하는 불편함을 가지고 있다. 이를 위해 본 연구에서는 재택 기반으로 소아 울음소리를 통해 음성 분석학적 요소를 추출하여 정상 소아와 질환을 앓고 있는 소아와의 비교, 분석을 통해 소아 질환을 진단할 수 있는 시스템을 개발하고자 한다. 특히, 본 논문은 소아에게 가장 쉽게 걸릴 수 있는 소아호흡기 질환 중 소아감기, 소아폐렴 및 소아천식을 대상으로 실험을 수행하였으며 울음소리의 특징 요소를 추출하여 진단기기로 개발하고자 한다. 이를 위해 소아호흡기 질환이 인체의 음성 기관을 자극하는 질환임을 가정하고 음성학적 분석 요소 중 조음기관과 관련된 주파수대역폭분석을 통한 방법을 실험하였으며 이를 정상 소아와 소아호흡기 질환을 앓고 있는 환자를 비교, 분석하였다. 이와같은 방법을 통해 정상 소아에 비해 호흡기 질환을 앓고 있는 소아가 주파수 대역폭이 짧게 형성되는 결과를 추출하였다.

전력시장 시뮬레이션을 위한 MAS 기반 GENCO 모델링 (Multi-agent System based GENCO model for an effective market simulation)

  • 강동주;김학만;정구형;한석만;김발호;허돈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.127-129
    • /
    • 2007
  • Since the competitive market environment was introduced into the electric power industry, the structure of the industry has been changing from vertically integrated system to functionally unbundled and decentralized system composed of multiple (decision-making) market participants. So the market participants such as Gencos or LSE (load serving entity) need to forecast the market clearing price and thus build their offer or bidding strategies. Not just these market players but also a market operator is required to perform market analysis and ensure simulation capability to manage and monitor the competitive electricity market. For fulfilling the demand for market simulation, many global venders like GE, Henwood, Drayton Analytics, CRA, etc. have developed and provided electricity market simulators. Most of these simulators are based on the optimization formulation which has been used mainly for the least cost resource planning in the centralized power system planning and operation. From this standpoint, it seems somehow inevitable to face many challenges on modeling competitive market based on the method of traditional market simulators. In this paper, we propose a kind of new method, which is MAS based market simulation. The agent based model has already been introduced in EMCAS, one of commercial market simulators, but there may be various ways of modeling agent. This paper, in particular, seeks to introduce an model for MAS based market simulator.

  • PDF

A Study on the Processing Standard of REALGAR

  • Kwak, Hwa-Sun;Byun, Young-Ho;Lee, Soo-Chan;Lee, Hyo-Jeong;Park, Seong-Cheol;Kim, Hye-Sung;Kwon, Dong-Yeul
    • Journal of Evidence-Based Herbal Medicine
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2010
  • While herbal medicine including mineral herbal medicine mostly provides microelements to the human body thanks to abundant metallic elements, its harmfulness has been raised due to elements of heavy metals. Harmfulness of mineral herbal medicine needs to be analyzed quantitatively as well as qualitatively so that specificity of herbal medicine including mineral herbal medicine can be reflected. Consequently, the following aims should be set up to mineral herbal medicine, REALGAR, standard processing of REALGAR and the standards of processed drugs should be secured. On the basis of the results of this study, the reasonable measures to develop the processing method and the test method for heavy metals were presented. Such measures are expected to give the following results. First, consumers may take food and medicine without anxiety, and food and medicine may be effectively managed, and the national service may be improved, and also safety against heavy metals may be publicized. Second, as the principal ingredients and microelements of mineral herbal medicine are qualitatively analyzed, such results are expected to contribute to the advance of national analytics for herbal medicine.

  • PDF

소셜 미디어 분석을 통한 음악 추천 모델의 설계 및 구현 (Design and implementation of a music recommendation model through social media analytics)

  • 정경록;박구락;박상혁
    • 융합정보논문지
    • /
    • 제11권9호
    • /
    • pp.214-220
    • /
    • 2021
  • 스마트폰이 빠르게 보급되면서 음악을 생활 속의 배경음악처럼 항상 모든 곳에서 듣는 것이 일반화되어 개인의 상황과 조건에 맞는 추천을 할 수 있는 음악 데이터베이스를 필요하다. 본 논문에서는 소셜 미디어를 통한 음악추천 모델을 제안한다. 소셜 미디어의 데이터를 사용하여 음악 데이터베이스를 작성하고 기존의 음원 제공 플랫폼이 주로 사용하는 협업필터링과는 다른 방식으로 음악을 분류한다. 웹크롤링으로 음악 제목이 해시 태그로 달린 게시글을 찾아 해당 글에 함께 달린 다른 해시 태그들을 수집하고 분류하여 실제 청취자의 음악에 관한 의견을 데이터베이스에 사용한다. 소셜 미디어를 작성할 때의 감정, 상황, 시간대, 날씨 등 많은 조건이 해시 태그에는 포함되어 있으므로 다양한 사람의 의견이 집단지성으로 반영된 소셜 미디어 기반 데이터베이스를 구축할 수 있다.

적응형 온라인 학습환경에서 학습자 특성 및 AI튜터 추천문항 학습활동의 학업성취도 예측력 탐색 (An Inquiry into Prediction of Learner's Academic Performance through Learner Characteristics and Recommended Items with AI Tutors in Adaptive Learning)

  • 최민선;정재삼
    • 한국IT서비스학회지
    • /
    • 제20권4호
    • /
    • pp.129-140
    • /
    • 2021
  • Recently, interest in AI tutors is rising as a way to bridge the educational gap in school settings. However, research confirming the effectiveness of AI tutors is lacking. The purpose of this study is to explore how effective learner characteristics and recommended item learning activities are in predicting learner's academic performance in an adaptive online learning environment. This study proposed the hypothesis that learner characteristics (prior knowledge, midterm evaluation) and recommended item learning activities (learning time, correct answer check, incorrect answer correction, satisfaction, correct answer rate) predict academic achievement. In order to verify the hypothesis, the data of 362 learners were analyzed by collecting data from the learning management system (LMS) from the perspective of learning analytics. For data analysis, regression analysis was performed using the regsubset function provided by the leaps package of the R program. The results of analyses showed that prior knowledge, midterm evaluation, correct answer confirmation, incorrect answer correction, and satisfaction had a positive effect on academic performance, but learning time had a negative effect on academic performance. On the other hand, the percentage of correct answers did not have a significant effect on academic performance. The results of this study suggest that recommended item learning activities, which mean behavioral indicators of interaction with AI tutors, are important in the learning process stage to increase academic performance in an adaptive online learning environment.

적대적 생성망을 이용한 부동산 시계열 데이터 생성 방안 (A Methodology for Realty Time-series Generation Using Generative Adversarial Network)

  • 유재필;한창훈;신현준
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.9-17
    • /
    • 2021
  • 최근 빅데이터 분석, 인공지능, 기계학습 등의 발전으로 인해서 데이터를 과학적으로 분석하는 기술이 발전하고 있으며 이는 의사결정 문제를 최적으로 해결해주고 있다. 그러나 특정 분야의 경우에는 데이터의 양이 부족해서 과학적 방식에 적용하는 것이 어렵다. 예컨대 부동산과 같은 데이터는 데이터 발표 시점이 최근이거나 비 유동성 자산이다 보니 발표 주기가 긴 경우가 많다. 따라서 본 연구에서는 이런 문제점을 극복하기 위해서 TimeGAN 모형을 통해 기존의 시계열의 확장 가능성에 대해서 연구하고자 한다. 이를 위해 부동산과 관련된 총 45개의 시계열을 데이터 셋에 맞게 2012년부터 2021년까지 주 단위로 데이터를 수집하고 시계열 간의 상관관계를 고려해서 총 15개의 최종 시계열을 선정한다. 15개의 시계열에 대해서 TimeGAN 모형을 통해 데이터 확장을한 결과, PCA 및 T-SNE 시각화 알고리즘을 통해 실제 데이터와 확장 데이터 간의 통계적 분포가 유사하다는 것을 확인할 수 있었다. 따라서 본 논문을 통해서 데이터의 과적합 또는 과소적합이라는 한계점을 극복할 수 있는 다양한 실험이 연구되기를 기대한다.

시설물의 유지관리를 위한 기계학습 기반 콘크리트 균열 감지 프레임워크 (Machine Learning-based Concrete Crack Detection Framework for Facility Maintenance)

  • 지봉준
    • 한국지반환경공학회 논문집
    • /
    • 제22권10호
    • /
    • pp.5-12
    • /
    • 2021
  • 시설물의 노후화는 피할 수 없는 현상이다. 노후화된 시설물의 관리를 위해 균열을 감지하고 이를 추적하면서 시설물의 상태를 간접적으로 추론할 수 있다. 따라서 균열 감지는 노후화된 시설물의 관리를 위해 필수적 역할을 하며 감지 결과를 바탕으로 더 이상의 노후화를 막기 위한 활동을 할 수 있다. 하지만, 현재 대부분의 균열 감지는 전문가의 판단에만 의존하기에 시설물의 면적이 큰 경우 비용과 시간이 과도하게 사용되고, 전문가의 역량에 따라 다른 판단 결과가 발생할 수 있어 신뢰성에 문제가 있었다. 본 논문에서는 이러한 한계를 극복하기 위해 기계학습 기반의 콘크리트 균열 감지 프레임워크를 제안한다. 제안된 프레임워크는 데이터 분류, 기계학습 모델 학습, 학습된 모델의 검증과 테스트를 포함하는 프레임워크로 완전 자동화된 콘크리트 균열 감지가 가능하다. 제안된 프레임워크를 통해 학습된 기계학습 모델은 콘크리트 균열 이미지와 정상 이미지를 96%의 높은 정확도로 분류할 수 있었다. 본 논문에서 제안된 프레임워크를 적용하여 기존의 전문가 중심의 시설물 유지관리보다 더욱 효과적이고 효율적인 시설물의 유지관리가 가능할 것으로 기대된다.

The Relationship between Meal Regularity and Oral Health and Metabolic Syndrome of Adults in Single Korean Households

  • Jung, Jin-Ah;Cheon, Hye-Won;Ju, On-Ju
    • 치위생과학회지
    • /
    • 제21권3호
    • /
    • pp.185-197
    • /
    • 2021
  • Background: This study aimed at investigating the meal regularity, health, and oral health habits of single Korean households to understand the impact of these factors on the risk of metabolic syndrome, in addition to preventing and managing metabolic syndrome. Methods: Using raw data from the 8th Korea National Health and Nutrition Examination Survey (2019), 274 study subjects, aged 19 to 64, were selected primarily from single adult households. Complex sample statistical analysis was performed using the Predictive Analytics Software Statistics ver. 18.0 program. Results: Regarding the meal regularity in single-person households in Korea, the younger group outperformed the middle-aged group, and those who drank more than once a month performed better than those who drank less than once a month. In terms of oral health, regardless of the age and the income level, participants who ate three meals a day had a higher rate of speech problems and chewing difficulties than those who ate irregularly or regularly on a regular day. Factors influencing the risk of developing metabolic syndrome were age, speech problems, and frequency of toothbrushing. Compared to the younger group, there were 0.361 times more people in the middle-aged group; and compared to those without speech problems, there were 1.161 more people with speech problem. Compared to those who tooth brushed more than four times a day, there were 1.284 more people who tooth brushed 2 to 3 times a day and there were 5.673 times more people who tooth brushed less than once. Conclusion: Based on the study results, it is necessary to implement a program that can plan and apply customized management measures and prevent metabolic syndrome by improving and correcting the health and oral health behaviors of single-person households in Korea. Therefore, active mediation measures, such as support and publicity at the local or national level, should be planned.

Safeguarding Korean Export Trade through Social Media-Driven Risk Identification and Characterization

  • Sithipolvanichgul, Juthamon;Abrahams, Alan S.;Goldberg, David M.;Zaman, Nohel;Baghersad, Milad;Nasri, Leila;Ractham, Peter
    • Journal of Korea Trade
    • /
    • 제24권8호
    • /
    • pp.39-62
    • /
    • 2020
  • Purpose - Korean exports account for a vast proportion of Korean GDP, and large volumes of Korean products are sold in the United States. Identifying and characterizing actual and potential product hazards related to Korean products is critical to safeguard Korean export trade, as severe quality issues can impair Korea's reputation and reduce global consumer confidence in Korean products. In this study, we develop country-of-origin-based product risk analysis methods for social media with a specific focus on Korean-labeled products, for the purpose of safeguarding Korean export trade. Design/methodology - We employed two social media datasets containing consumer-generated product reviews. Sentiment analysis is a popular text mining technique used to quantify the type and amount of emotion that is expressed in the text. It is a useful tool for gathering customer opinions regarding products. Findings - We document and discuss the specific potential risks found in Korean-labeled products and explain their implications for safeguarding Korean export trade. Finally, we analyze the false positive matches that arise from the established dictionaries that were used for risk discovery and utilize these classification errors to suggest opportunities for the future refinement of the associated automated text analytic methods. Originality/value - Various studies have used online feedback from social media to analyze product defects. However, none of them links their findings to trade promotion and the protection of a specific country's exports. Therefore, it is important to fill this research gap, which could help to safeguard export trade in Korea.

합성 블록 어텐션 모듈을 이용한 운동 동작 인식 성능 분석 (Performance Analysis of Exercise Gesture-Recognition Using Convolutional Block Attention Module)

  • 경찬욱;정우용;선준호;선영규;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.155-161
    • /
    • 2021
  • 최근, 실시간으로 카메라를 통해 동작을 인식하는 기술의 연구가 많이 진행되고 있다. 기존의 연구들에서는 사람의 관절로부터 특징을 추출하는 개수가 적기 때문에 동작 분류의 정확도가 낮은 한계점들이 있다. 본 논문에서는 이러한 한계점들을 해결하기 위해 움직일 때 변하는 관절의 각도를 특징 추출하여 계산하는 알고리즘과 이미지 분류 시에 정확도가 높은 CBAM(Convolutional Block Attention Module)을 사용한 분류모델을 제안한다. AI Hub에서 제공하는 피트니스 자세 이미지로부터 5가지 운동 동작 이미지를 인용하여 분류 모델에 적용한다. 구글에서 제공하는 그래프 기반 프레임워크인 MediaPipe 기법을 사용하여, 이미지로부터 운동 동작 분류에 중요한 8가지 관절 각도 정보를 추가적으로 추출한다. 추출한 특징들을 모델의 입력으로 설정하여, 분류 모델을 학습시킨다. 시뮬레이션 결과로부터 제안한 모델은 높은 정확도로 운동 동작을 구분하는 것을 확인할 수 있다.