출산율, 결흔율 감소 및 이혼을 증가 등의 사회적 현상으로 인해 태어나면서부터 건강에 대한 관심이 증대되고 있는 실정이다. 특히 의사 표현 능력이 부족한 소아의 질환 진단은 직접 내원해서 진단을 받아야 하는 불편함을 가지고 있다. 이를 위해 본 연구에서는 재택 기반으로 소아 울음소리를 통해 음성 분석학적 요소를 추출하여 정상 소아와 질환을 앓고 있는 소아와의 비교, 분석을 통해 소아 질환을 진단할 수 있는 시스템을 개발하고자 한다. 특히, 본 논문은 소아에게 가장 쉽게 걸릴 수 있는 소아호흡기 질환 중 소아감기, 소아폐렴 및 소아천식을 대상으로 실험을 수행하였으며 울음소리의 특징 요소를 추출하여 진단기기로 개발하고자 한다. 이를 위해 소아호흡기 질환이 인체의 음성 기관을 자극하는 질환임을 가정하고 음성학적 분석 요소 중 조음기관과 관련된 주파수대역폭분석을 통한 방법을 실험하였으며 이를 정상 소아와 소아호흡기 질환을 앓고 있는 환자를 비교, 분석하였다. 이와같은 방법을 통해 정상 소아에 비해 호흡기 질환을 앓고 있는 소아가 주파수 대역폭이 짧게 형성되는 결과를 추출하였다.
Since the competitive market environment was introduced into the electric power industry, the structure of the industry has been changing from vertically integrated system to functionally unbundled and decentralized system composed of multiple (decision-making) market participants. So the market participants such as Gencos or LSE (load serving entity) need to forecast the market clearing price and thus build their offer or bidding strategies. Not just these market players but also a market operator is required to perform market analysis and ensure simulation capability to manage and monitor the competitive electricity market. For fulfilling the demand for market simulation, many global venders like GE, Henwood, Drayton Analytics, CRA, etc. have developed and provided electricity market simulators. Most of these simulators are based on the optimization formulation which has been used mainly for the least cost resource planning in the centralized power system planning and operation. From this standpoint, it seems somehow inevitable to face many challenges on modeling competitive market based on the method of traditional market simulators. In this paper, we propose a kind of new method, which is MAS based market simulation. The agent based model has already been introduced in EMCAS, one of commercial market simulators, but there may be various ways of modeling agent. This paper, in particular, seeks to introduce an model for MAS based market simulator.
While herbal medicine including mineral herbal medicine mostly provides microelements to the human body thanks to abundant metallic elements, its harmfulness has been raised due to elements of heavy metals. Harmfulness of mineral herbal medicine needs to be analyzed quantitatively as well as qualitatively so that specificity of herbal medicine including mineral herbal medicine can be reflected. Consequently, the following aims should be set up to mineral herbal medicine, REALGAR, standard processing of REALGAR and the standards of processed drugs should be secured. On the basis of the results of this study, the reasonable measures to develop the processing method and the test method for heavy metals were presented. Such measures are expected to give the following results. First, consumers may take food and medicine without anxiety, and food and medicine may be effectively managed, and the national service may be improved, and also safety against heavy metals may be publicized. Second, as the principal ingredients and microelements of mineral herbal medicine are qualitatively analyzed, such results are expected to contribute to the advance of national analytics for herbal medicine.
스마트폰이 빠르게 보급되면서 음악을 생활 속의 배경음악처럼 항상 모든 곳에서 듣는 것이 일반화되어 개인의 상황과 조건에 맞는 추천을 할 수 있는 음악 데이터베이스를 필요하다. 본 논문에서는 소셜 미디어를 통한 음악추천 모델을 제안한다. 소셜 미디어의 데이터를 사용하여 음악 데이터베이스를 작성하고 기존의 음원 제공 플랫폼이 주로 사용하는 협업필터링과는 다른 방식으로 음악을 분류한다. 웹크롤링으로 음악 제목이 해시 태그로 달린 게시글을 찾아 해당 글에 함께 달린 다른 해시 태그들을 수집하고 분류하여 실제 청취자의 음악에 관한 의견을 데이터베이스에 사용한다. 소셜 미디어를 작성할 때의 감정, 상황, 시간대, 날씨 등 많은 조건이 해시 태그에는 포함되어 있으므로 다양한 사람의 의견이 집단지성으로 반영된 소셜 미디어 기반 데이터베이스를 구축할 수 있다.
Recently, interest in AI tutors is rising as a way to bridge the educational gap in school settings. However, research confirming the effectiveness of AI tutors is lacking. The purpose of this study is to explore how effective learner characteristics and recommended item learning activities are in predicting learner's academic performance in an adaptive online learning environment. This study proposed the hypothesis that learner characteristics (prior knowledge, midterm evaluation) and recommended item learning activities (learning time, correct answer check, incorrect answer correction, satisfaction, correct answer rate) predict academic achievement. In order to verify the hypothesis, the data of 362 learners were analyzed by collecting data from the learning management system (LMS) from the perspective of learning analytics. For data analysis, regression analysis was performed using the regsubset function provided by the leaps package of the R program. The results of analyses showed that prior knowledge, midterm evaluation, correct answer confirmation, incorrect answer correction, and satisfaction had a positive effect on academic performance, but learning time had a negative effect on academic performance. On the other hand, the percentage of correct answers did not have a significant effect on academic performance. The results of this study suggest that recommended item learning activities, which mean behavioral indicators of interaction with AI tutors, are important in the learning process stage to increase academic performance in an adaptive online learning environment.
최근 빅데이터 분석, 인공지능, 기계학습 등의 발전으로 인해서 데이터를 과학적으로 분석하는 기술이 발전하고 있으며 이는 의사결정 문제를 최적으로 해결해주고 있다. 그러나 특정 분야의 경우에는 데이터의 양이 부족해서 과학적 방식에 적용하는 것이 어렵다. 예컨대 부동산과 같은 데이터는 데이터 발표 시점이 최근이거나 비 유동성 자산이다 보니 발표 주기가 긴 경우가 많다. 따라서 본 연구에서는 이런 문제점을 극복하기 위해서 TimeGAN 모형을 통해 기존의 시계열의 확장 가능성에 대해서 연구하고자 한다. 이를 위해 부동산과 관련된 총 45개의 시계열을 데이터 셋에 맞게 2012년부터 2021년까지 주 단위로 데이터를 수집하고 시계열 간의 상관관계를 고려해서 총 15개의 최종 시계열을 선정한다. 15개의 시계열에 대해서 TimeGAN 모형을 통해 데이터 확장을한 결과, PCA 및 T-SNE 시각화 알고리즘을 통해 실제 데이터와 확장 데이터 간의 통계적 분포가 유사하다는 것을 확인할 수 있었다. 따라서 본 논문을 통해서 데이터의 과적합 또는 과소적합이라는 한계점을 극복할 수 있는 다양한 실험이 연구되기를 기대한다.
시설물의 노후화는 피할 수 없는 현상이다. 노후화된 시설물의 관리를 위해 균열을 감지하고 이를 추적하면서 시설물의 상태를 간접적으로 추론할 수 있다. 따라서 균열 감지는 노후화된 시설물의 관리를 위해 필수적 역할을 하며 감지 결과를 바탕으로 더 이상의 노후화를 막기 위한 활동을 할 수 있다. 하지만, 현재 대부분의 균열 감지는 전문가의 판단에만 의존하기에 시설물의 면적이 큰 경우 비용과 시간이 과도하게 사용되고, 전문가의 역량에 따라 다른 판단 결과가 발생할 수 있어 신뢰성에 문제가 있었다. 본 논문에서는 이러한 한계를 극복하기 위해 기계학습 기반의 콘크리트 균열 감지 프레임워크를 제안한다. 제안된 프레임워크는 데이터 분류, 기계학습 모델 학습, 학습된 모델의 검증과 테스트를 포함하는 프레임워크로 완전 자동화된 콘크리트 균열 감지가 가능하다. 제안된 프레임워크를 통해 학습된 기계학습 모델은 콘크리트 균열 이미지와 정상 이미지를 96%의 높은 정확도로 분류할 수 있었다. 본 논문에서 제안된 프레임워크를 적용하여 기존의 전문가 중심의 시설물 유지관리보다 더욱 효과적이고 효율적인 시설물의 유지관리가 가능할 것으로 기대된다.
Background: This study aimed at investigating the meal regularity, health, and oral health habits of single Korean households to understand the impact of these factors on the risk of metabolic syndrome, in addition to preventing and managing metabolic syndrome. Methods: Using raw data from the 8th Korea National Health and Nutrition Examination Survey (2019), 274 study subjects, aged 19 to 64, were selected primarily from single adult households. Complex sample statistical analysis was performed using the Predictive Analytics Software Statistics ver. 18.0 program. Results: Regarding the meal regularity in single-person households in Korea, the younger group outperformed the middle-aged group, and those who drank more than once a month performed better than those who drank less than once a month. In terms of oral health, regardless of the age and the income level, participants who ate three meals a day had a higher rate of speech problems and chewing difficulties than those who ate irregularly or regularly on a regular day. Factors influencing the risk of developing metabolic syndrome were age, speech problems, and frequency of toothbrushing. Compared to the younger group, there were 0.361 times more people in the middle-aged group; and compared to those without speech problems, there were 1.161 more people with speech problem. Compared to those who tooth brushed more than four times a day, there were 1.284 more people who tooth brushed 2 to 3 times a day and there were 5.673 times more people who tooth brushed less than once. Conclusion: Based on the study results, it is necessary to implement a program that can plan and apply customized management measures and prevent metabolic syndrome by improving and correcting the health and oral health behaviors of single-person households in Korea. Therefore, active mediation measures, such as support and publicity at the local or national level, should be planned.
Sithipolvanichgul, Juthamon;Abrahams, Alan S.;Goldberg, David M.;Zaman, Nohel;Baghersad, Milad;Nasri, Leila;Ractham, Peter
Journal of Korea Trade
/
제24권8호
/
pp.39-62
/
2020
Purpose - Korean exports account for a vast proportion of Korean GDP, and large volumes of Korean products are sold in the United States. Identifying and characterizing actual and potential product hazards related to Korean products is critical to safeguard Korean export trade, as severe quality issues can impair Korea's reputation and reduce global consumer confidence in Korean products. In this study, we develop country-of-origin-based product risk analysis methods for social media with a specific focus on Korean-labeled products, for the purpose of safeguarding Korean export trade. Design/methodology - We employed two social media datasets containing consumer-generated product reviews. Sentiment analysis is a popular text mining technique used to quantify the type and amount of emotion that is expressed in the text. It is a useful tool for gathering customer opinions regarding products. Findings - We document and discuss the specific potential risks found in Korean-labeled products and explain their implications for safeguarding Korean export trade. Finally, we analyze the false positive matches that arise from the established dictionaries that were used for risk discovery and utilize these classification errors to suggest opportunities for the future refinement of the associated automated text analytic methods. Originality/value - Various studies have used online feedback from social media to analyze product defects. However, none of them links their findings to trade promotion and the protection of a specific country's exports. Therefore, it is important to fill this research gap, which could help to safeguard export trade in Korea.
최근, 실시간으로 카메라를 통해 동작을 인식하는 기술의 연구가 많이 진행되고 있다. 기존의 연구들에서는 사람의 관절로부터 특징을 추출하는 개수가 적기 때문에 동작 분류의 정확도가 낮은 한계점들이 있다. 본 논문에서는 이러한 한계점들을 해결하기 위해 움직일 때 변하는 관절의 각도를 특징 추출하여 계산하는 알고리즘과 이미지 분류 시에 정확도가 높은 CBAM(Convolutional Block Attention Module)을 사용한 분류모델을 제안한다. AI Hub에서 제공하는 피트니스 자세 이미지로부터 5가지 운동 동작 이미지를 인용하여 분류 모델에 적용한다. 구글에서 제공하는 그래프 기반 프레임워크인 MediaPipe 기법을 사용하여, 이미지로부터 운동 동작 분류에 중요한 8가지 관절 각도 정보를 추가적으로 추출한다. 추출한 특징들을 모델의 입력으로 설정하여, 분류 모델을 학습시킨다. 시뮬레이션 결과로부터 제안한 모델은 높은 정확도로 운동 동작을 구분하는 것을 확인할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.