• Title/Summary/Keyword: analytics

Search Result 738, Processing Time 0.019 seconds

A Study on the Predictive Analytics Powered by the Artificial Intelligence in the Movie Industry

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.72-83
    • /
    • 2021
  • The use of the predictive analytics (PA) powered by the artificial intelligence (AI) is more important in the movie sector during the COVID-19 pandemic, because Hollywood witnessed the impact of the 'Netflix Effect' and began to invest in data and AI. Our purpose is to discover a few cases of the AI centered PA in the movie industry value chain based on five objectives of PA: Compete, grow, enforce, improve, and satisfy. Even if movie companies' interest is to predict future success for competing with over-the-tops (OTTs) at a first glance, it is observed, once they start to use the PA with the AI, they try to utilize the enhanced PA platforms for remaining four objectives. As a result, ScriptBook, Vault, Pilot, Cinelytic and Merlin Video (Merlin) are use cases for the objective 'compete.' Movio of Vista Group International and Datorama of Salesforce are use cases for the objective 'grow.' Industrial Light & Magic (ILM) and Geena Davis Institute on Gender in Media (GDI) with Disney are use cases for the objective 'enforce.' Watson, Benjamin, and Greenlight Essential are use cases for the objective 'improve.' Disney Research (DR) with Simon Fraser University and California Institute of Technology is the use case for the objective 'satisfy.'

Smart Fire Fighting Appliances Monitoring System using GS1 based on Big Data Analytics Platform (GS1을 활용한 빅데이터 분석 플랫폼 기반의 스마트 소화기구 모니터링 시스템)

  • Park, Heum
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.57-68
    • /
    • 2018
  • This paper presents a smart firefighting appliances monitoring system based on big data analytics platform using GS1 for Smart City. Typical firefighting appliances are fire hydrant, fire extinguisher, fire alarm, sprinkler, fire engine, etc. for the fire of classes A/B/C/D/E. Among them, the dry chemical fire extinguisher have been widely supplied and 6 millions ones were replaced for the aging ones over 10 years in the past year. However, only 5% of them have been collected for recycling of chemical materials included the heavy metals of environment pollution. Therefore, we considered the trace of firefighting appliances from production to disposal for the public open service. In the paper, we suggest 1) a smart firefighting appliances system using GS1, 2) a big data analytics platform and 3) a public open service and visualization with the analyzed information, for fire extinguishers from production to disposal. It can give the information and the visualized diagrams with the analyzed data through the public open service and the free Apps.

Big IoT Healthcare Data Analytics Framework Based on Fog and Cloud Computing

  • Alshammari, Hamoud;El-Ghany, Sameh Abd;Shehab, Abdulaziz
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1238-1249
    • /
    • 2020
  • Throughout the world, aging populations and doctor shortages have helped drive the increasing demand for smart healthcare systems. Recently, these systems have benefited from the evolution of the Internet of Things (IoT), big data, and machine learning. However, these advances result in the generation of large amounts of data, making healthcare data analysis a major issue. These data have a number of complex properties such as high-dimensionality, irregularity, and sparsity, which makes efficient processing difficult to implement. These challenges are met by big data analytics. In this paper, we propose an innovative analytic framework for big healthcare data that are collected either from IoT wearable devices or from archived patient medical images. The proposed method would efficiently address the data heterogeneity problem using middleware between heterogeneous data sources and MapReduce Hadoop clusters. Furthermore, the proposed framework enables the use of both fog computing and cloud platforms to handle the problems faced through online and offline data processing, data storage, and data classification. Additionally, it guarantees robust and secure knowledge of patient medical data.

The Impact of Big Data Analytics on Audit Procedures: Evidence from the Middle East

  • ALRASHIDI, Mousa;ALMUTAIRI, Abdullah;ZRAQAT, Omar
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • The goal of this study was to see how big data analytics (BDA) affected external audit procedures in the Middle East. The measurement model and structural model of this investigation were evaluated using PLS-SEM (3.3.3). The study sample members were (361) auditors who work in auditing companies in Kuwait, Saudi Arabia, the United Arab Emirates, Jordan, Bahrain, Egypt, Lebanon, and Iraq. A questionnaire was chosen to the study sample members electronically, and the study sample members were (5093) auditors who work in auditing companies in Kuwait, Saudi Arabia, the United Arab Emirates, Jordan, Bahrain, Egypt, Lebanon, and Iraq. To choose the sample, the researchers used a stratified random sampling procedure. The findings show that BDA has an impact on audit procedures at all phases of the auditing process, where it contributes to information delivery that helps auditors understand the client's internal and external environments, which in turn influences the choice to accept the audit assignment. Furthermore, by providing essential information, BDA enables auditors to simply run analytical procedures, estimate client risks, and understand and evaluate the internal control system. As a result, auditors must develop their abilities in the BDA field, as it adds to the creation of additional value for both auditors and their clients.

The Impact of Exploration and Exploitation Activities and Market Agility on the Relationship between Big Data Analytics Capability and Firms' Performance (빅 데이터 분석능력과 기업 성과 간의 관계에서 혁신 및 개선 활동과 시장 민첩성의 영향)

  • Jung, He-Kyung;Boo, Jeman
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.150-162
    • /
    • 2022
  • This study investigated the impact of the latest developments in big data analytics capabilities (BDAC) on firm performance. The BDAC have the power to innovate existing management practices. Nevertheless, their impact on firm performance has not been fully is not yet fully elucidated. The BDAC relates to the flexibility of infrastructure as well as the skills of management and firm's personnel. Most studies have explored the phenomena from a theoretical perspective or based on factors such as organizational characteristics. However, this study extends the flow of previous research by proposing and testing a model which examines whether organizational exploration, exploitation and market agility mediate the relationship between the BDAC and firm performance. The proposed model was tested using survey data collected from the long-term employees over 10 years in 250 companies. The results analyzed through structural equation modeling show that a strong BDAC can help improve firm performance. An organization's ability to analyze big data affects its exploration and exploitation thereby affecting market agility, and, consequently, firm performance. These results also confirm the powerful mediating role of exploration, exploitation, and market agility in improving insights into big data utilization and improving firm performance.

ADA: Advanced data analytics methods for abnormal frequent episodes in the baseline data of ISD

  • Biswajit Biswal;Andrew Duncan;Zaijing Sun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.3996-4004
    • /
    • 2022
  • The data collected by the In-Situ Decommissioning (ISD) sensors are time-specific, age-specific, and developmental stage-specific. Research has been done on the stream data collected by ISD testbed in the recent few years to seek both frequent episodes and abnormal frequent episodes. Frequent episodes in the data stream have confirmed the daily cycle of the sensor responses and established sequences of different types of sensors, which was verified by the experimental setup of the ISD Sensor Network Test Bed. However, the discovery of abnormal frequent episodes remained a challenge because these abnormal frequent episodes are very small signals and may be buried in the background noise of voltage and current changes. In this work, we proposed Advanced Data Analytics (ADA) methods that are applied to the baseline data to identify frequent episodes and extended our approach by adding more features extracted from the baseline data to discover abnormal frequent episodes, which may lead to the early indicators of ISD system failures. In the study, we have evaluated our approach using the baseline data, and the performance evaluation results show that our approach is able to discover frequent episodes as well as abnormal frequent episodes conveniently.

Developing a National Data Metrics Framework for Learning Analytics in Korea

  • RHA, Ilju;LIM, Cheolil;CHO, Young Hoan;CHOI, Hyoseon;YUN, Haeseon;YOO, Mina;Jeong Eui-Suk
    • Educational Technology International
    • /
    • v.18 no.1
    • /
    • pp.1-25
    • /
    • 2017
  • Educational applications of big data analysis have been of interest in order to improve learning effectiveness and efficiency. As a basic challenge for educational applications, the purpose of this study is to develop a comprehensive data set scheme for learning analytics in the context of digital textbook usage within the K-12 school environments of Korea. On the basis of the literature review, the Start-up Mega Planning model of needs assessment methodology was used as this study sought to come up with negotiated solutions for different stakeholders for a national level of learning metrics framework. The Ministry of Education (MOE), Seoul Metropolitan Office of Education (SMOE), and Korean Education and Research Information Service (KERIS) were involved in the discussion of the learning metrics framework scope. Finally, we suggest a proposal for the national learning metrics framework to reflect such considerations as dynamic education context and feasibility of the metrics into the K-12 Korean schools. The possibilities and limitations of the suggested framework for learning metrics are discussed and future areas of study are suggested.

A Big Data-Driven Business Data Analysis System: Applications of Artificial Intelligence Techniques in Problem Solving

  • Donggeun Kim;Sangjin Kim;Juyong Ko;Jai Woo Lee
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • It is crucial to develop effective and efficient big data analytics methods for problem-solving in the field of business in order to improve the performance of data analytics and reduce costs and risks in the analysis of customer data. In this study, a big data-driven data analysis system using artificial intelligence techniques is designed to increase the accuracy of big data analytics along with the rapid growth of the field of data science. We present a key direction for big data analysis systems through missing value imputation, outlier detection, feature extraction, utilization of explainable artificial intelligence techniques, and exploratory data analysis. Our objective is not only to develop big data analysis techniques with complex structures of business data but also to bridge the gap between the theoretical ideas in artificial intelligence methods and the analysis of real-world data in the field of business.

"Does Emotional Intelligence Impact Technology Adoption?" : A study on Adoption of Augmented Reality

  • Abhishek Srivastava;Ananya Ray;Arghya Ray;Pradip Kumar Bala;Shilpee A Dasgupta;Yogesh K. Dwivedi
    • Asia pacific journal of information systems
    • /
    • v.33 no.3
    • /
    • pp.624-651
    • /
    • 2023
  • The study makes several contributions to not only the adoption literature by examining the influence of Emotional Intelligence (EI) and Big-Five traits on adoption of Augmented Reality (AR) but also given its utility in both industry and research, it contributes to the interesting inter-disciplinary domain of psychology, information systems, and human behaviour. A quantitative based approach using a sample of 275 respondents was undertaken. It is found that emotional intelligence influence both perceived ease-of-use and perceived usefulness. They in turn influence intention to use. Another important observation is that personality traits (openness and agreeableness) have a significant moderating effect on the relation between attitude and intention to use AR. This research will help academicians and executives working on the adoption of AR in various sectors ranging from retail industry to the education sector. The originality of this study is that it explores the impact of EI on the acceptance of AR and helps in extending the literature in interdisciplinary research.