• Title/Summary/Keyword: analytical methodology

Search Result 570, Processing Time 0.025 seconds

Analytical Head-space Supercritical Fluid Extraction Methodology for the Determination of Organochlorine Compounds in Aqueous Matrix

  • Ryoo, Keon-Sang;Ko, Seong-Oon;Hong, Yong-Pyo;Choi, Jong-Ha;Kim, Yong-gyun;Lee, Won-Kyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.649-656
    • /
    • 2006
  • The proposed head-space supercritical fluid extraction (SFE) methodology as an alternative to an existing conventional procedure was explored for the determination of organochlorine compounds in aqueous matrix. In this study, polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were utilized as target analytes. To enhance the recovery efficiency, the factors such as the $CO _2$ density, the extraction time, and the extraction mode were investigated. Furthermore, the analytical procedures and the results obtained were compared with those provided by the conventional method (the U.S. EPA method 8080). Under the optimized conditions, i.e., a combination of static with dynamic SFE mode at 2,000 psi and 40 ${^{\circ}C}$, the head-space SFE methodology gave equivalent or better to the conventional method in recovery efficiencies with clear advantages such as simple sample treatment and fast analysis time as well as reduced solvent and reagent consumption.

Analytical Design Methodology for Recommending VDT Workstation Settings and Computer Accessories Layout

  • Rurkhamet, Busagarin;Nanthavanij, Suebsak
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.2
    • /
    • pp.140-150
    • /
    • 2004
  • Repetitive stress injury at the wrist has been reported as a common injury among visual display terminal (VDT) users (i.e., computer users). Adjusting a VDT workstation (computer table and chair) to maintain a correct seated posture while operating a keyboard is perhaps the most frequently recommended preventive solution. This paper proposes an analytical design methodology based on ergonomic design principles for recommending appropriate VDT workstation settings and layout of individual computer accessories on the computer table. The proposed design methodology consists of two interrelated phases: (1) determination of VDT workstation settings, and (2) design of computer accessories layout. Based on the information about the VDT user, dominant task to be performed, typing skill, and degrees of physical and visual interactions between the user and computer accessories, adjustment and layout solutions are recommended to allow having a correct seated posture while minimizing both physical and visual movements. The results from an experiment show that when adjusting the workstation and locating the computer accessories according to the recommendations given by the proposed design methodology, the user's hand movements can be significantly reduced.

Collapse resistance of steel frames in two-side-column-removal scenario: Analytical method and design approach

  • Zhang, JingZhou;Yam, Michael C.H.;Soltanieh, Ghazaleh;Feng, Ran
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.485-496
    • /
    • 2021
  • So far analytical methods on collapse assessment of three-dimensional (3-D) steel frames have mainly focused on a single-column-removal scenario. However, the collapse of the Federal Building in the US due to car bomb explosion indicated that the loss of multiple columns may occur in the real structures, wherein the structures are more vulnerable to collapse. Meanwhile, the General Services Administration (GSA) in the US suggested that the removal of side columns of the structure has a great possibility to cause collapse. Therefore, this paper analytically deals with the robustness of 3-D steel frames in a two-side-column-removal (TSCR) scenario. Analytical method is first proposed to determine the collapse resistance of the frame during this column-removal procedure. The reliability of the analytical method is verified by the finite element results. Moreover, a design-based methodology is proposed to quickly assess the robustness of the frame due to a TSCR scenario. It is found the analytical method can reasonably predict the resistance-displacement relationship of the frame in the TSCR scenario, with an error generally less than 10%. The parametric numerical analyses suggest that the slab thickness mainly affects the plastic bearing capacity of the frame. The rebar diameter mainly affects the capacity of the frame at large displacement. However, the steel beam section height affects both the plastic and ultimate bearing capacity of the frame. A case study on a six-storey steel frame shows that the design-based methodology provides a conservative prediction on the robustness of the frame.

Development of Analytical Model to Predict The Inelastic Behavior of Reinforced Concrete And Masonry Structures (RC 및 조적조구조물의 비탄성 거동예측을 위한 해석적 모델개발)

  • 홍원기;이호범;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.160-167
    • /
    • 1993
  • In earthquake structural engineering towards a better understanding of both the earthquake ground motion and structural response, the design of concrete structures to resist strong ground input motions is not a simple matter, and analytical models for such structures must be developed from a design perspective that accounts for the complexities of the structural responses. The primary objective earthquake structural engineering research is to ensure the safety of structures by understanding and improving a design menthodology. Ideally, this would require the development of an analytical model related to a design methodology that ensures a dectile performance. For the accurate assessment of the adequacy of analytically developed model, experiments conducted to study the inplane inelastic cyclic behavior of structures should verify the analytical approach. The paper is to demonstrate experimentally verified analytical method that provide the adequate degree of safety and confidience in the behavior of R.C. structural components and further attempts to extend the developed modeling technique for use by practicing structural engineers.

  • PDF

Magnetic Field Calculation and Multi-objective Optimization of Axial Flux Permanent Magnet Generator with Coreless Stator Windings

  • Zhu, Jun;Li, Shaolong;Song, Dandan;Han, Qiaoli;Li, guanghua
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1586-1595
    • /
    • 2018
  • For the problem that the complexity of 3-D modeling and multi parameter optimization, as well as the uncertainty of the winding factor of axial flux permanent magnet generator with coreless windings. The complex 3-D model was simplified into 2-D analytic model, and an analytical formula for the winding factor that adapting different coreless stator winding is proposed in this paper. The analytical solution for air-gap magnetic fields, no-load back EMF, electromagnetic torque, and efficiency are calculated by using this method. The multiple objective and multivariable optimization of the maximum fundamental and the minimum harmonic content of back EMF are performed by using response surface methodology. The proposed optimum design method was applied to make a generator. The generator was tested and the calculated results are compared with the proposed method, which show good agreements.

Flexural/shear strength of RC beams with longitudinal FRP bars An analytical approach

  • Kosmidou, Parthena-Maria K.;Chalioris, Constantin E.;Karayannis, Chris G.
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.573-592
    • /
    • 2018
  • An analytical methodology for the calculation of the flexural and the shear capacity of concrete members with Fibre-Reinforced-Polymer (FRP) bars as tensional reinforcement is proposed. The flexural analysis is initially based on the design provisions of ACI 440.1R-15 which have properly been modified to develop general charts that simplify computations and provide hand calculations. The specially developed charts include non-dimensional variables and can easily be applied in sections with various geometrical properties, concrete grade and FRP properties. The proposed shear model combines three theoretical considerations to facilitate calculations. A unified flexural/shear approach is developed in flow chart which can be used to estimate the ultimate strength and the expected failure mode of a concrete beam reinforced with longitudinal FRP bars, with or without transverse reinforcement. The proposed methodology is verified using existing experimental data of 138 beams from the literature, and it predicts the load-bearing capacity and the failure mode with satisfactory accuracy.

Analytical methodology for solving anisotropic materials of antiplane problems

  • Ma, Chien-Ching;Cheng, Yih-Hong
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.147-157
    • /
    • 1999
  • An analytical methodology for solving antiplane problem of anisotropic materials is proposed and discussed in detail in this study. The material considered in this study possesses a symmetry plane at z=0. The relationship between the problems of anisotropic materials and the corresponding isotropic problems are established by Ma (1996) on the basis of the general solutions for the shear stresses and displacement in both the polar and Cartesian coordinate systems. This implies that any solution of an anisotropic problem can be obtained by solving a corresponding isotropic problem. In this study some examples and numerical results are presented as an explanation of how the complicated anisotropic problem could be solved by the associated simpler isotropic problem.

Optimal Geometric Design of Transverse Flux Linear Motor Using Response Surface Methodology (반응표면분석법을 이용한 횡자속 선형전동기의 형상최적설계)

  • Hong, Do-Kwan;Woo, Byung-Chul;Kang, Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.498-504
    • /
    • 2006
  • Thrust force of linear motor is one of the important factor to specify motor performance. In this study, we optimized maximizing the thrust force of TFLM(Transverse Flux Linear Motor) using Response Surface Methodology by the table of orthogonal way. The Response Surface Methodology was well adapted to make the analytical model of the maximum thrust force and enable the objective function to be easily created and a great deal of the time In computation to be saved. Therefore, it is expected that the proposed optimization procedure using the Response Surface Methodology can be easily utilized to solve the optimization problem of electric machine.

Evaluation of Methodology for the Measurement of VOCs in the Air by Adsorbent Sampling and Thermal Desorption with GC Analysis (흡착포집 및 열탈착/GC 분석에 의한 공기 중 휘발성 유기화합물의 측정방법론 평가)

  • 백성옥;황승만;박상곤;전선주;김병주;허귀석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.121-138
    • /
    • 1999
  • This study was carried out to evaluate the performance of a sampling and analytical methodology for the measurement of selected volatile organic compounds (VOCs) in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/FID and GC/MSD analysis. Target analytes were aromatic VOCs, including BTEX, 1,3,5-and 1,2,4,-trimethylbenzenes(TMBs), and naphthalene. The methodology was investigatedwith a wide range of performance criteria such as repeatability, linearity, lower detection limits, collection efficiency, thermal conditioning, breakthrough volume and calibration methods using internal and external standards. standards. Stability of samples collected on adsorbent tubes during storage was also investigated. In addition, the sampling and analytical method developed during this study was applied to real samples duplicately collected in various indoor and outdoor environments. Precisions for the duplicate samples and distributed volume samples appeared to be well comparable with the performance criteria recommended by USEPA TO-17. The audit accuracy was estimated by inter-lab comparison of both duplicate samples and standard materials between the two independent labs. The overall precision and accuracy of the method were estimated to be within 30% for major aromatic VOCs such as BTEX. This study demonstrated that the adsorbent sampling and thermal desorption method can be reliably applied for the measurement of BTEX in ppb levels frequently occurred in common indoor and ambient environments.

  • PDF

Comparison of Impulses Experienced on Human Joints Walking on the Ground to Those Experienced Walking on a Treadmill

  • So, Byung-Rok;Yi, Byung-Ju;Han, Seog-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.243-252
    • /
    • 2008
  • It has been reported that long-term exercise on a treadmill (running machine) may cause injury to the joints in a human's lower extremities. Previous works related to analysis of human walking motion are, however, mostly based on clinical statistics and experimental methodology. This paper proposes an analytical methodology. Specifically, this work deals with a comparison of normal walking on the ground and walking on a treadmill in regard to the external and internal impulses exerted on the joints of a human's lower extremities. First, a modeling procedure of impulses, impulse geometry, and impulse measure for the human lower extremity model will be briefly introduced and a new impulse measure for analysis of internal impulse is developed. Based on these analytical tools, we analyze the external and internal impulses through a planar 7-linked human lower extremity model. It is shown through simulation that the human walking on a treadmill exhibits greater internal impulses on the knee and ankle joints of the supporting leg when compared to that on the ground. In order to corroborate the effectiveness of the proposed methodology, a force platform was developed to measure the external impulses exerted on the ground for the cases of the normal walking and walking on the treadmill. It is shown that the experimental results correspond well to the simulation results.