• Title/Summary/Keyword: analytical formulation

Search Result 414, Processing Time 0.021 seconds

Analysis for Unstable Phenomenon of Rotating Discs Due to Head Interface (헤드 간섭으로 인한 회전 디스크의 불안정 현상에 대한 분석)

  • Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1609-1614
    • /
    • 2000
  • This paper presents the modeling, theoretical formulation, and stability analysis for a combined system of a spinning disk and a head that contacts the disk. In the analytical model, head interface is considered by a rotating mass-spring-damper system together with a frictional follower force on the damped annular disks. The method of multiple scales is utilized to perform the stability analysis that shows the existence of instability associated with parametric resonances. This instability can be effectively stabilized by increasing the damping ratio of a disk.

  • PDF

Simplified Seismic Response Analysis of a RC Bridge (철근콘크리트 교량의 단순화된 내진응답해석)

  • 이도형;전종수;박대효
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.949-954
    • /
    • 2003
  • In this paper, simplified modeling approach describing the hysteretic behavior of reinforced concrete columns is discussed. The inelastic response of a reinforced concrete column or pier subjected to cyclic deformation reversals or earthquake ground motion is evaluated by use of lumped hysteretic representation. For this purpose, the hystertic model under axial force variation is developed and implemented into a nonlinear finite element analysis program. The analytical predictions obtained with the new formulation are compared with test results and reveal accuracy and applicability in terms of strength and stiffness. In addition, comparison between results with and without axial force variation stresses the importance of the proposed approach.

  • PDF

Analysis of transport current loss in HTS tape (고온 초전도 선재에서의 통전 손실 해석)

  • 최세용;이준호;나완수;장석헌;주진호;정재훈;류경우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.55-57
    • /
    • 2003
  • In this paper, we described the procedures of AC transport current loss in HTS tape. To carry out the calculation, A-$\Phi$ formulation was introduced and two dimensional FEM was used for computation. The results were showed that ellipse shape was higher loss compared to rectangle one and these were almost same behavior of analytical results predicted by Norris. A comparative analysis of loss for various n-value variation was also presented.

  • PDF

Characterization of Korean Clays and Pottery by Neutron Activation Analysis(II). Characterization of Korean Potsherds

  • Lee, Chul;Kwun, Oh-Cheun;Kim, Seung-Won;Lee, Ihn-Chong;Kim, Nak-Bae
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.347-353
    • /
    • 1986
  • Fisher's discriminant method has been applied to the problem of the classification of Korean potsherds, using their elemental composition as analyzed by neutron activation analysis. A combination of analytical data by means of statistical linear discriminant analysis has resulted in removal of redundant variables, optimal linear combination of meaningful variables and formulation of classification rules.

Micro-scale dependent static stress and strain analyses of thickness-stretching micro plate in sport application

  • Mingjun Xia
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.349-358
    • /
    • 2023
  • Aim of this work is investigating effect of thickness-stretching formulation on the quasi three-dimensional analysis of micro plate based on a thickness-stretched and shear deformable model through principle of virtual work and micro-scale dependent constitutive relations. Governing differential equations are derived in terms of five unknown functions and the analytical solution is derived using Navier's technique. To explore effect of thickness stretching model on the static results, a comparison between the results with and without thickness stretching effect is presented.

Formulation for seismic response of a ship-block system

  • Kuchaksarai, Masoud Moghaddasi;Bargi, Khosrow
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.293-308
    • /
    • 2006
  • This paper presents a complete and consistent formulation to study the seismic response of a free-standing ship supported by an arrangement of n keel blocks which are all located in a dry dock. It is considered that the foundation of the system is subjected to both horizontal and vertical in plane excitation. The motion of the system is classified in eight different modes which are Rest (relative), Sliding of keel blocks, Rocking of keel blocks, Sliding of the ship, Sliding of both keel blocks and the ship, Sliding and rocking of keel blocks, Rocking of keel blocks with sliding of the ship, and finally Sliding and rocking of keel blocks accompanied with sliding of the ship. For each mode of motion the governing equations are derived, and transition conditions between different modes are also defined. This formulation is based on a number of fundamental assumptions which are 2D idealization for motion of the system, considering keel blocks as the rigid ones and the ship as a massive rigid block too, allowing the similar motion for all keel blocks, and supposing frictional nature for transmitted forces between contacted parts. Also, the rocking of the ship is not likely to take place, and the complete ship separation from keel blocks or separation of keel blocks from the base is considered as one of the failure mode in the system. The formulation presented in this paper can be used in its entirety or in part, and they are suitable for investigation of generalized response using suitable analytical, or conducting a time-history sensitivity analysis.

Material and Geometrical Noninear Analysis of Reinforced Concrete Columns under Cyclic Loading (반복하중을 받는 철근콘크리트 기둥부재의 재료 및 기하적인 비선형 해석)

  • 김운학
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.55-66
    • /
    • 1999
  • This paper presents an analytical prediction of the hysteresis behavior of reinforced concrete long column with rectangular section under the cyclic loading state. The mechanical characteristic of cracked concrete and reinforcing bar in concrete has been modeled, considering the bond effect between reinforcing bar and concrete, the effect of aggregate interlocking at crack surface and the stiffness degradation after the crack has taken place. The strength increase of concrete due to the lateral confining reinforcement has been also taken into account to model the confined concrete. The formulation of these models for concrete and reinforcing bar has been based on the smeared crack concept that the stress-strain relationship of reinforced concrete element would be defined using the average values. In addition to the material nonlinear properties, the algorithm for large displacement problem that may give an additional deformation has been formulated using total Lagrangian formulation. The analytically predicted behavior was compared with test result and they showed good agreement in overall behavior.

  • PDF

Quality Control of Majoon-e-Nisyan and its Acute Oral Toxicity Study in Experimental Rats

  • Shaikh, Masud;Husain, Gulam M.;Naikodi, Mohammed Abdul Rasheed;Kazmi, Munawwar H.;Viquar, Uzma
    • CELLMED
    • /
    • v.11 no.1
    • /
    • pp.2.1-2.8
    • /
    • 2021
  • The clinical condition Amnesia causes difficulty in learning new information and the inability to recall past events. It is primarily concerned with recent memory loss. Majoon-e-Nisyan (MJN) is a polyherbal Unani formulation, present in a semi-solid form. It is widely used potent drug of the Unani System of Medicine (USM) for treating Nisyan (amnesia). In the present study polyherbal Unani formulation, MJN has been studied for its quality control and acute toxicity. Standardization (quality control) of drugs deals with drug identity, drug quality and purity determination. Standardization of MJN had been done as per the Unani pharmacopoeial parameters approved by World Health Organization (WHO) - Pharmacognostical parameters, Physico-chemical parameters, high-performance thin-layer chromatography (HPTLC), microbial load, aflatoxin, and heavy metals. Solvents and chemicals used in the study were of analytical grade and used instrument were calibrated. By conducting an acute oral toxicity study in rats, the safety of MJN was assessed. The limit test method of OECD guideline 425 was followed in the study. Results of standardization and standard operating procedures (SOPs) for preparation of MJN may serve as the standard reference in the future. The data generated in the study for the quality control of MJN proved the quality of formulation and shows that MJN is not toxic in rats following acute dosing up to 2000 mg/kg bw. The data obtained in the paper for MJN may be used as a standard guideline for preparation of the formulation which can save time, cost, and resources for future research endeavours.

A study on thermo-mechanical behavior of MCD through bulge test analysis

  • Altabey, Wael A.
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.107-119
    • /
    • 2017
  • The Micro circular diaphragm (MCD) is the mechanical actuator part used in the micro electro-mechanical sensors (MEMS) that combine electrical and mechanical components. These actuators are working under harsh mechanical and thermal conditions, so it is very important to study the mechanical and thermal behaviors of these actuators, in order to do with its function successfully. The objective of this paper is to determine the thermo-mechanical behavior of MCD by developing the traditional bulge test technique to achieve the aims of this work. The specimen is first pre-stressed to ensure that is no initial deflection before applied the loads on diaphragm and then clamped between two plates, a differential pressure (P) and temperature ($T_b$) is leading to a deformation of the MCD. Analytical formulation of developed bulge test technique for MCD thermo-mechanical characterization was established with taking in-to account effect of the residual strength from pre-stressed loading. These makes the plane-strain bulge test ideal for studying the mechanical and thermal behavior of diaphragm in both the elastic and plastic regimes. The differential specimen thickness due to bulge effect to describe the mechanical behavior, and the temperature effect on the MCD material properties to study the thermal behavior under deformation were discussed. A finite element model (FEM) can be extended to apply for investigating the reliability of the proposed bulge test of MCD and compare between the FEM results and another one from analytical calculus. The results show that, the good convergence between the finite element model and analytical model.

Ambient vibration testing and seismic performance of precast I beam bridges on a high-speed railway line

  • Toydemir, Burak;Kocak, Ali;Sevim, Baris;Zengin, Basak
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.557-570
    • /
    • 2017
  • In this study, the seismic performance levels of four bridges are determined using finite element modeling based on ambient vibration testing. The study includes finite element modeling, analytical modal analyses, ambient vibration testing and earthquake analyses of the bridges. For the purpose, four prestressed precast I beam bridges that were constructed for the Ankara-Sivas high speed railway line are selected for analytical and experimental studies. In the study, firstly a literature review related to the dynamic behavior of bridges especially precast beam bridges is given and then the formulation part related to ambient vibration testing and structural performance according to Turkish Seismic Code (2007) is presented. Next, 3D finite element models of the bridge are described and modeled using LARSA 4D software, and analytical dynamic characteristics are obtained. Then ambient vibration testing conducted on the bridges under natural excitations and experimental natural frequencies are estimated. Lastly, time history analyses of the bridges under the 1999 Kocaeli, 1992 Erzincan, and 1999 Duzce Earthquakes are performed and seismic performance levels according to TSC2007 are determined. The results show that the damage on the bridges is all under the minimum damage limit which is in the minimum damage region under all three earthquakes.