• 제목/요약/키워드: analytical and numerical methods

검색결과 393건 처리시간 0.027초

Parallel tunnel settlement characteristics: a theoretical calculation approach and adaptation analysis

  • Liu, Xinrong;Suliman, Lojain;Zhou, Xiaohan;Abd Elmageed, Ahmed
    • Geomechanics and Engineering
    • /
    • 제28권3호
    • /
    • pp.225-237
    • /
    • 2022
  • Settlement evaluation is important for shallow tunnels in big cities to estimate the settlement that occurs due to the excavation of twin tunnels. The majority of earlier research on analytical solutions, on the other hand, concentrated on calculating the settlement for a single tunnel. This research introduces a procedure to evaluate the settlement induced by the excavation of twin tunnels (two parallel tunnels). In this study, a series of numerical analysis were performed to validate the analytical solution results. Two geological conditions were considered to derive the settlement depending on each case. The analytical and numerical methods were compared, which involved considering many sections and conducting a parametric study; the results have good agreement. Moreover, a comparison of the 3D flat model and 2D (FEM) with the analytical solution shows that in the fill soil, the maximum settlement values were obtained by the analytical solution. In contrast, the values obtained by the analytical solution in the rock is more conservative than those in the fill. Finally, this method was shown to be appropriate for twin tunnels dug side by side by utilizing finite element analysis 3D and 2D (PLAXIS 3D and PLAXIS 2D) to verify the analytical equations. Eventually, it will be possible to use this approach to predict settlement troughs over twin tunnels.

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M.;Duczek, Sascha;Gabbert, Ulrich
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.587-614
    • /
    • 2014
  • In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.

Thermal Analysis on a Satellite Box during Launch Stage by Analytical Solution

  • Choi, Joon-Min;Kim, Hui-Kyung;Hyun, Bum-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권2호
    • /
    • pp.17-25
    • /
    • 2003
  • Simple methods are developed to predict temperatures of a satellite box during launch stage. The box is mounted on outer surface of satellite and directly exposed to space thermal environment for the time period from fairing jettison to separation. These simple methods are to solve a 1st order ordinary differential equation (ODE) which is simplified from the governing equation after applying several assumptions. The existence of analytical solution for the 1st order ODE is determined depending on treatment of time-dependent molecular heating term. Even for the case that the analytical solution is not available due to the time dependent term, the 1st order ODE can be solved by relatively simple numerical techniques. The temperature difference between two different approaches (analytical and numerical solutions) is relatively small (Jess than $1^{\circ}C$ along the time line) when they are applied to STSAT-I launch scenario. The present methods can be generally used as tools to quickly check whether a satellite box is safe against space environment during the launch stage for the case that the detailed thermal analysis is not available.

Semi-Analytical Methods for Different Problems of Diffraction-Radiation by Vertical Circular Cylinders

  • Malenica, Sime
    • International Journal of Ocean System Engineering
    • /
    • 제2권2호
    • /
    • pp.116-138
    • /
    • 2012
  • As in the other fields of mechanics, analytical methods represent an important analysis tool in marine hydrodynamics. The analytical approach is interesting for different reasons : it gives reference results for numerical codes verification, it gives physical insight into some complicated problems, it can be used as a simplified predesign tool, etc. This approach is of course limited to some simplified geometries (cylinders, spheres, ...), and only the case of one or more cylinders, truncated or not, will be considered here. Presented methods are basically eigenfunction expansions whose complexity depends on the boundary conditions. The hydrodynamic boundary value problem (BVP) is formulated within the usual assumptions of potential flow and is additionally simplified by the perturbation method. By using this approach, the highly nonlinear problem decomposes into its linear part and the higher order (second, third, ...) corrections. Also, periodicity is assumed so that the time dependence can be factorized i.e. the frequency domain formulation is adopted. As far as free surface flows are concerned, only cases without or with small forward speed are sufficiently simple to be solved semi-analytically. The problem of the floating body advancing in waves with arbitrary forward speed is far more complicated. These remarks are also valid for the general numerical methods where the case of arbitrary forward speed, even linearized, is still too difficult from numerical point of view, and "it is fair to say that there exists at present no general practical numerical method for the wave resistance problem" [9], and even less for the general seakeeping problem. We note also that, in the case of bluff bodies like cylinders, the assumptions of the potential flow are justified only if the forward speed is less than the product of wave amplitude with wave frequency.

다양한 다중 볼트 접합부의 거동에 대한 수치해석 (Numerical Behavior Analysis for the Various Multiple Bolted Connections)

  • 김광철
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권3호
    • /
    • pp.24-29
    • /
    • 2008
  • 수치해석 모델을 적용하여 다중 볼트 접합부의 거동을 해석하였다. 기본 모델로 축력-휨 요소를 가정하고 해석을 실시하였으며, 프레임재의 효과와 철물의 효과를 구분하여 해석을 실시하였다. 기존의 해석적인 방법은 볼트의 개수가 2개까지만으로 제한될 경우는 어느 정도 정확도를 보여 줄 수 있어서 많은 시간이 소요되는 수치해석적 방법보다 장점이 있을 수 있다. 하지만 현실적으로 사용되고 있는 현장의 조건은 그 이상의 볼트를 사용하고 있는 실정이다. 또한 현장에서 사용되고 있는 볼트의 배치 및 배열 형태를 기존의 해석적 방법을 적용하여 거동 분석을 실시한다는 것은 불가능하다. 이러한 현실 조건을 고려하여 볼트 접합부의 정확한 거동해석을 실시하기 위해서는 수치해석적 방법을 적용하는 방법 이외에는 대안이 없다. 다양한 다중 볼트 접합부에 대해 수치해석 모델을 적용한 결과 광범위하게 사용되고 있는 항복모델 등의 기존의 경험적 해석방법에 비해 현실적인 접합부 여건 반영이 수월하고 정확성에 있어서 우수함을 볼 수 있었다.

Coupled approach of analytical and numerical methods for shape prediction in sheet casting process

  • Chae, Kyung-Sun;Lee, Seong-Jae;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제13권3호
    • /
    • pp.131-139
    • /
    • 2001
  • A coupled approach is proposed for the prediction of sheet profile in sheet casting process, which combines one-dimensional analytical method on planar elongational flow region and three-dimensional numerical method on the other region. The strategy is constructed from the observations that the flow domain of sheet casting process can be separated into two parts based old the flow kinematics. The flow field in the central region of sheet, over which the planar elongational flow dominates, is possibly replaced by one-dimensional analytical solution. Then only a partial flow domain near the edge region of sheet, where the flow kinematics cannot be described by the planar elongational flow itself, requires three-dimensional numerical simulation. Good agreement is observed between the coupled approach developed in this study and the full three-dimensional numerical simulation previously developed and reported by the authors. This coupled approach may have provided flexibility with low costs to accommodate a wide range of die sizes in sheet casting process.

  • PDF

An accurate analytical exploration for dynamic response of thermo-electric CNTRC beams under driving harmonic and constant loads resting on Pasternak foundation

  • Mohammadreza Eghbali;Seyed Amirhosein Hosseini
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.549-564
    • /
    • 2024
  • This paper aims to analyze the dynamic response of thermoelectric carbon nanotube-reinforced composite (CNTRC) beams under moving harmonic load resting on Pasternak elastic foundation. The governing equations of thermoelectric CNTRC beam are obtained based on the Karama shear deformation beam theory. The beams are resting on the Pasternak foundation. Previous articles have not performed the moving load mode with the analytical method. The exact solution for the transverse and axial dynamic response is presented using the Laplace transform. A comparison of previous studies has been published, where a good agreement is observed. Finally, some examples were used to analyze, such as excitation frequency, voltage, temperature, spring constant factors, the volume fraction of Carbon nanotubes (CNTs), the velocity of a moving harmonic load, and their influence on axial and transverse dynamic and maximum deflections. The advantages of the proposed method compared to other numerical methods are zero reduction of the error percentage that exists in numerical methods.

시멘트 페이스트의 슬럼프 유동 모사를 위한 분석적 해의 검토 (Review on Analytical Solutions for Slump Flow of Cement Paste)

  • 윤태영
    • 한국도로학회논문집
    • /
    • 제18권3호
    • /
    • pp.21-32
    • /
    • 2016
  • PURPOSES : In this paper, the analytical solutions suggested to simulate the behavior of rheological fluids were rigorously re-derived and investigated for fixed conditions to evaluate the applicability for the solutions on a mini-cone slump test of cement paste. The selected solutions with proper boundary conditions can be used as reference solutions to evaluate the performance of numerical simulation approaches, such as the discrete element method. METHODS : The slump, height, and spread radius for the given boundary and yield stress conditions that are determined by five different analytical solutions are compared. RESULTS : The analytical solution based on fluid mechanics for pure shear flow shows similar results to that for intermediate flow at low yield stresses. The fluid mechanics-based analytical solution resulted in a very similar trend to the geometry-based analytical solution. However, it showed a higher slump at high yield stress and lower slump at low yield stress ranges than the geometry-based analytical model. The analytical solution based on the mini-cone geometry was not significantly affected by the yield criteria, such as von Mises and Tresca. CONCLUSIONS : Even though differences among the analytical solutions in terms of slump and spread radius existed, the difference can be considered insignificant when the solutions were used as reference to evaluate the appropriateness of numerical approaches, such as the discrete element method.

Numerical and analytical study of aeroelastic characteristics of wind turbine composite blades

  • Ghasemi, Ahmad Reza;Jahanshir, Arezu;Tarighat, Mohammad Hassan
    • Wind and Structures
    • /
    • 제18권2호
    • /
    • pp.103-116
    • /
    • 2014
  • Aeroelasticity is the main source of instability in structures which are subjected to aerodynamic forces. One of the major reasons of instability is the coupling of bending and torsional vibration of the flexible bodies, which is known as flutter. The presented investigation aims to study the aeroelastic stability of composite blades of wind turbine. Geometry, layup, and loading of the turbine blades made of laminated composites were calculated and evaluated. To study the flutter phenomenon of the blades, two numerical and analytical methods were selected. The finite element method (FEM), and JAR-23 standard were used to perform the numerical studies. In the analytical method, two degree freedom flutter and Lagrange's equations were employed to study the flutter phenomena analytically and estimate the flutter speed.

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit

  • Ham, Sang-Hwan;Cho, Su-Yeon;Kang, Dong-Woo;Lee, Hyung-Woo;Chan, Hong-Soon;Lee, Ju
    • International Journal of Railway
    • /
    • 제3권1호
    • /
    • pp.14-18
    • /
    • 2010
  • This paper describes design and characteristic analysis of long primary type linear synchronous motor (LSM) for high speed train system. LSM is designed using loading distribution method and magnetic equivalent circuit. For characteristic analysis of LSM, analytical and numerical methods are applied. Analytical method for solving the magnetic field distribution of the analytic model is based on the Maxwell’s equations. Using the characteristic equation and magnetic equivalent circuit, we analyze the effect of variation of parameters, and then we validate the result by comparing with numerical method by finite element method (FEM). We compare the analytical method with numerical method for analyzing the effect by variable parameters. This result will be useful of design and forecast of performance without FEM.

  • PDF