• 제목/요약/키워드: analysis parameters

검색결과 18,206건 처리시간 0.05초

Slip에 따른 농형유도전동기의 회로정수 산정 (Calculation of the Parameter according to the Slip in Squirrel-Cage Induction Motor)

  • 이수진;이정종;김성일;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.738_739
    • /
    • 2009
  • This paper describes the calculation of the equivalent circuit parameters according to the slip in squirrel-cage induction motor. Recently, the induction motor is demanded of the various operation condition. In order to acquire the accurate characteristic for the operation condition of the motor, equivalent circuit parameters have to be calculated accurately. So the equivalent circuit parameters are computed by using the finite element method, the reliable characteristic analysis is carried out by application of the parameter to the equivalent circuit analysis. From the analysis result using this combined equivalent circuit and finite element method is compared with the experimental results by a detailed equivalent circuit, the validity of the method is proved.

  • PDF

PSO 알고리즘을 이용한 동적부하모델링 (Dynamic Load Modeling Using a PSO algorithm)

  • 김영곤;송화창;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.93_94
    • /
    • 2009
  • Load modeling has a significant impact on power system analysis and control. Estimating model parameters can be considered as important as stability analysis itself for accurate analysis and control. This paper presents a method for estimating parameters for load models, which include static and dynamic parts, based on particle swarm optimization. The method effectively searches a suitable set of parameters minimizing the fitness function. This paper applies the method to simulation data obtained from 8-bus test system including induction motors.

  • PDF

Stochastic finite element analysis of composite plates considering spatial randomness of material properties and their correlations

  • Noh, Hyuk-Chun
    • Steel and Composite Structures
    • /
    • 제11권2호
    • /
    • pp.115-130
    • /
    • 2011
  • Considering the randomness of material parameters in the laminated composite plate, a scheme of stochastic finite element method to analyze the displacement response variability is suggested. In the formulation we adopted the concept of the weighted integral where the random variable is defined as integration of stochastic field function multiplied by a deterministic function over a finite element. In general the elastic modulus of composite materials has distinct value along an individual axis. Accordingly, we need to assume 5 material parameters as random. The correlations between these random parameters are modeled by means of correlation functions, and the degree of correlation is defined in terms of correlation coefficients. For the verification of the proposed scheme, we employ an independent analysis of Monte Carlo simulation with which statistical results can be obtained. Comparison is made between the proposed scheme and Monte Carlo simulation.

Non-stochastic interval factor method-based FEA for structural stress responses with uncertainty

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.703-708
    • /
    • 2017
  • The goal of this study is to evaluate behavior uncertainties of structures by using interval finite element analysis based on interval factor method as a specific non-stochastic tool. The interval finite element method, i.e., interval FEM, is a finite element method that uses interval parameters in situations where it is not possible to get reliable probabilistic characteristics of the structure. The present method solves the uncertainty problems of a 2D solid structure, in which structural characteristics are assumed to be represented as interval parameters. An interval analysis method using interval factors is applied to obtain the solution. Numerical applications verify the intuitive effectiveness of the present method to investigate structural uncertainties such as displacement and stress without the application of probability theory.

Students' Perspective (Stream Wise) of Parameters Affecting the Undergraduate Engineering Education: A Live Study

  • Kumari, Neeraj;Kumar, Deepak
    • Asian Journal of Business Environment
    • /
    • 제6권1호
    • /
    • pp.25-30
    • /
    • 2016
  • Purpose - The study aims to examine the students' perspective (stream wise) of parameters affecting the undergraduate engineering education system present in a private technical institution in NCR, Haryana, India. Research design, data, and methodology - It is a descriptive type of research in nature. Questionnaire Based Survey has been used to collect the data. The sample size for the study is 500 comprising of the students respondents. The sample has been taken randomly and the questionnaire was filled by the students (pursuing B. Tech) chosen on the random basis from a private technical educational institution in NCR, Haryana, India. For data analysis and conclusion of the results of the survey, statistical tool like F test was performed with the help of high quality software; SPSS. Conclusion - Analysis of variance revealed statistically no difference between the mean number of the groups (stream wise) for the parameters "Selection", "Academic Excellence", "Infrastructure", "Personality Development and Industry Exposure" and "Management and Administration". While Analysis of variance revealed statistically difference between the mean numbers of the groups for the parameter "Placements".

제조 공정상 랜덤 특성을 고려한 IC 최악조건 해석 (IC Worst Case Analysis Considered Random Fluctuations on Fabrication Process)

  • 박상봉;박노경;전흥우;문대철;차균현
    • 대한전자공학회논문지
    • /
    • 제25권6호
    • /
    • pp.637-646
    • /
    • 1988
  • The CMOS physical parameters are extracted using by processing models in fabrication steps, processing parameters, fabrication disturbances, control parameters. Statistical CMOS process and device simulator is proposed to evaluate the effect of inherent fluctuations in IC fabrication. Using this simulator, we perform worst case analysis in terms of statistically independent disturbances and compare this proposed method to Monte Carlo method, previous Worst Case method. And simulation results with this proposed method are more accurate than the past worst case analysis. This package is written in C language and runs on a IBM PC AT(OPUS).

  • PDF

Fast classification of fibres for concrete based on multivariate statistics

  • Zarzycki, Pawel K.;Katzer, Jacek;Domski, Jacek
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.23-29
    • /
    • 2017
  • In this study engineered steel fibres used as reinforcement for concrete were characterized by number of key mechanical and spatial parameters, which are easy to measure and quantify. Such commonly used parameters as length, diameter, fibre intrinsic efficiency ratio (FIER), hook geometry, tensile strength and ductility were considered. Effective classification of various fibres was demonstrated using simple multivariate computations involving principal component analysis (PCA). Contrary to univariate data mining approach, the proposed analysis can be efficiently adapted for fast, robust and direct classification of engineered steel fibres. The results have revealed that in case of particular spatial/geometrical conditions of steel fibres investigated the FIER parameter can be efficiently replaced by a simple aspect ratio. There is also a need of finding new parameters describing properties of steel fibre more precisely.

다중 핀 하중을 받는 MWK 복합재료의 응력 해석 (Stress Analysis of MWK Composite Laminate with Multi-pin Loaded Holes)

  • 조민규;김병구;전흥재;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.74-78
    • /
    • 2003
  • Stress analysis was conducted with finite element method to study the stress distributions in both single-pin and multi-pin loaded composite laminates. The various parameters involved in the design of the joint method were considered. The stress distributions in the vicinity of the holes were predicted considering the effects of various parameters such as the lay-ups, number of pins, number of rows, row spacing, and hole patterns. The results show that the performance of joint is greatly affected by these parameters.

  • PDF

결함이 있는 회전요소 베어링에서 음향-진동 신호의 고차 통계해석 (Higher Order Statistical Analysis of Sound-Vibration Signal in Rolling Element Bearing with defects)

  • 이해철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.49-56
    • /
    • 1999
  • This paper present a study on the application of sound pressure and vibration signals to detect the presence of defects in a rolling element bearing using a statistical analysis method. The well established statistical parameters such as the crest factor and the distribution of moments including kurtosis and skewless are utilized in this study. In addition, other statistical parameters derived from the beta distribution function are also used. A comparison study on the performance of the different types of parameter used is also performed. The statistical analysis is used because of its simplicity and quick computation. Under ideal conditions, the statistical method can be used to identify the different types of defect present in the bearing. In addition, the results also reveal that there is no significant advantages in using the beta function parameters when compared to using kurtosis and the crest factor for detecting and identifying defects in rolling element bearings from both sound and vibration signals.

  • PDF

Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis

  • Arefi, Mohammad;Zur, Krzysztof Kamil
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.615-623
    • /
    • 2020
  • In this paper, free vibration analysis of a functionally graded cylindrical nanoshell resting on Pasternak foundation is presented based on the nonlocal elasticity theory. A two-dimensional formulation along the axial and radial directions is presented based on the first-order shear deformation shell theory. Hamilton's principle is employed for derivation of the governing equations of motion. The solution to formulated boundary value problem is obtained based on a harmonic solution and trigonometric functions for various boundary conditions. The numerical results show influence of significant parameters such as small scale parameter, stiffness of Pasternak foundation, mode number, various boundary conditions, and selected dimensionless geometric parameters on natural frequencies of nanoshell.