• Title/Summary/Keyword: analysis of textile fabric structure

Search Result 30, Processing Time 0.031 seconds

Yarn Segmentation from 3-D Voxel Data for Analysis of Textile Fabric Structure

  • Shinohara, Toshihiro;Takayama, Jun-ya;Ohyama, Shinji;Kobayashi, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.877-881
    • /
    • 2005
  • In this paper, a novel method for analyzing a textile fabric structure is proposed to segment each yarn of the textile fabric from voxel data made out of its X-ray computed tomography (CT) images. In order to segment the each yarn, directions of fibers, of which yarn consists, are firstly estimated by correlating the voxel with a fiber model. Second, each fiber is reconstructed by clustering the voxel of the fiber using the estimated fiber direction as a similarity. Then, each yarn is reconstructed by clustering the reconstructed fibers using a distance which is newly defined as a dissimilarity. Consequently, each yarn of the textile fabric is segmented from the voxel data. The effectiveness of the proposed method is confirmed by experimentally applying the method to voxel data of a sample plain woven fabric, which is made of polyester two folded yarn. The each two folded yarn is correctly segmented by the proposed method.

  • PDF

Analysis of Image Similarity Index of Woven Fabrics and Virtual Fabrics - Application of Textile Design CAD System and Shuttle Loom - (직물과 가상소재의 화상 유사성 분석 연구 - 수직기 및 텍스타일 CAD시스템 활용 -)

  • Yoon, Jung-Won;Kim, Jong-Jun
    • Fashion & Textile Research Journal
    • /
    • v.15 no.6
    • /
    • pp.1010-1017
    • /
    • 2013
  • Current global textiles and fashion industries have gradually shifted focus to high value-added, high sensibility, and multi-functional products based on new human-friendliness and sustainable growth technologies. Textile design CAD systems have been developed in conjunction with computer hardware and software sector advances. This study compares the patterns or images of actual woven fabrics and virtual fabrics prepared with a textile design CAD system. In this study, several weave structures (such as fancy yarn weave and patterns) were prepared with a shuttle loom. The woven textile images were taken using a CCD camera. The same weave structure data and yarn data were fed into a textile design CAD system in order to simulate fabric images as similarly as possible. Similarity Index analysis methods allowed for an analysis of the index between the actual fabric specimen and the simulated image of the corresponding fabric. The results showed that repeated small pattern weaves provide superior similarity index values than those of a fancy yarn weave that indicate some irregularities due to fancy yarn attributes. A Complex Wavelet Structural Similarity(CW-SSIM) index resulted in a better index than other methods such as Multi-Scale(MS) SSIM, and Feature Similarity(FS) SSIM, across fabric specimen images. A correlation analysis of the similarity index based on an image analysis and a similarity evaluation by panel members was also implemented.

Effect of Yarns Cross-Sections and Structure Parameters of Its Knitted Fabrics to Moisture Transport of Perspiration Absorption and Fast Dry Fabrics (실 단면 형상과 니트 구조 인자가 흡한속건 소재의 수분이동 특성에 미치는 영향)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.20 no.4
    • /
    • pp.457-463
    • /
    • 2018
  • This study examined the water absorption and drying properties of the thirteen types of the knitted fabrics for sports wear. These physical properties were analysed with relation to the constituent fiber cross-sectional shape and structure parameters of the knitted fabrics by regression analysis. Absorption and drying properties of the knitted fabric specimens were increased with increasing the porosity of the constituent yarns, which was attributed to the capillary channels in the yarns. The water absorption and drying properties were increased and decreased with increasing tightness factor and stitch density of the knitted fabric. The absorption property of the knitted fabric for perspiration absorption and fast dry sport-wear clothing was mostly influenced mostly by fiber cross-sectional shape and its characteristics, whereas, drying property was dependent on the structural parameters of the knitted fabric such as tightness factor and stitch density. Therefore, superior perspiration absorption and fast drying knitted fabric could be obtained in the fabric structure with optimum tightness factor and stitch density, and constituent yarn structure with non-circular fiber crosssection and high porosity. GATS method and MMT method are used to measure sweating fast drying properties and it is necessary to carry out studies using these measurement methods in order to compare with the results of this study.

Development and Sensory Evaluation of Jacquard Fabrics with Three Dimensional Pattern Design for Bag (가방용 3D 입체패턴 디자인 자카드 직물 개발과 감성구조)

  • Kim, Jeong-Hwa;Kim, Myoung-ok;Lee, Jung-soon
    • Fashion & Textile Research Journal
    • /
    • v.21 no.1
    • /
    • pp.104-111
    • /
    • 2019
  • This study was developed using the DTP (digital textile printing) jacquard fabrics with a three-dimensional pattern for bag and evaluated the preference and emotional structure. The following conclusions were obtained. Three-dimensional patterns of 12 species using the illustrator program, including six kinds of designs based on the text and six kinds of character types based on the geometry of the basic design was developed. As a result of evaluating the preference of the three-dimensional pattern jacquard fabric, the most preferred fabric was a three-dimensional patterned jacquard fabric with a motif of the Korean consonant "ㅅ". The results of analyzing the emotional dimension of the three-dimensional pattern jacquard fabric, eight factors including simple image, feminine image, exotic image, graphic image, sporty image, masculine image, dynamic image and stereoscopic image were derived. Between emotional factors and preferences correlation analysis showed the stronger the simple image, the feminine image, and the sporty image, the more preferable. It suggested the possibility of a morphological and new fabric for bag, textile design motifs by using Hangul consonants attempt to limit the flatness of the existing geometric form patterns that can be applied to three-dimensional bag whether swirly patterns overcome.

Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M.;Najar S. Shaikhzadeh;Etrati S. M.;Toosi Z. Khorram
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.295-304
    • /
    • 2006
  • High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.

Analysis of the Structure of Lockstitched Seam according to Sewing Thread Tension (봉사장력에 따른 본봉 Seam의 구조해석)

  • Suh, Jung-Kwon
    • Fashion & Textile Research Journal
    • /
    • v.3 no.1
    • /
    • pp.25-30
    • /
    • 2001
  • In order to investigate the influence of thread tension on the structure of lockstitch seam, stitch tightness and seam balance ratio are measured at various tensions of needle thread and bobbin thread. The structure of lockstitch was shown in terms of skeleton stitch models to obtain quantitative analysis of stitch tightness. The balanced seam formed to the rectangu1ar stitch model under low bobbin thread tension, but the fabric tightness produced by interlaced needle and bobbin thread under high bobbin thread tension. In this paper, new equation to obtain seam balance ratio was proposed for a lockstitch seam. By using the new equation, the seam balance ratio was not affected by the stitch density and fabric thickness. In order to form the balanced seam, the ratio on tension of needle thread and bobbin thread was about 6:1~7:1 in this experiment.

  • PDF

An Analysis of New Textile Material Developmental Trend (섬유 신소재 개발 Trend에 대한 고찰)

  • 이유경;김순심
    • Korean Journal of Rural Living Science
    • /
    • v.6 no.1
    • /
    • pp.11-24
    • /
    • 1995
  • The new textile materials may be defined as textile materials different from already existing ones in the physical and chemical structure, manufacturing process, or end-use property. The present time what is called the post-industrial society is characterized by rapid change and new technology. Also, textile materials have been changed rapidly and diversely in the post-industrial society than in any other periods. The study aimed to analyze the trend of new tektite materials development in Korea and to forecast the development trend in the future. To investigate the trend of new textile materials, various written materials and informations were collected from the manufacturers, textile related periodicals, and research journals, and they were analyzed. The period of analysis was from January 1992 to May 1995. The results of this research are as followings : (1) Mixed textile materiasl such as bicomponent fiber, blended yam and blended fabric were increased. (2) High technology has an important effect upon new textile material development. (3) functional textile materials were increased (4) The high value-added products were increased. (5) The naturalized textile materials were increased.

  • PDF

Analysis of the operation effciency with the application of fabirc design CAD system (직물설계 CAD System활용에 따른 작업성 분석)

  • Kim, Hee-Sam;Kim, Mi Sun;Lee, Young Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.11-17
    • /
    • 2005
  • This study was performed to analysis the operation process when fabric pattern design was done by the use of CAD system compared with the manual work in order to determine the operation efficiency with the application of fabric design CAD system. The results of the study were as follows: 1. since 160,000 colors were supported by CAD system, color proposed by consumer was able to match exactly according to the its design. However, exact color matching was not possible by manual work. 2. Woven state of back of pattern design could be identified simultaneously with face of it for CAD system, while face and back of the fabrics should be designed separatedly in case of manual work. 3. Since the combination of warp and filling yarn was compatible with the fabric density in one repeat unit in CAD system, exact size of pattern design to be woven was able to expressed. 4. Only simple graphical expression by manual work was seen, while with the CAD system, texture and shade effect as well as graphical expression could be expressed and so fault could be reduced in advance with the simulation of actual feeling of fabrics in the screen. In conclusion, when CAD system will be introduced to the textile industry, operation time of designing pattern can be reduced. Since the operation is easy and simple, a beginner can operate CAD system easily. Thus, production and wage costs can be saved and this can be related directly with the improvement of productivity which is the main purpose of introducing CAD system.

  • PDF

Physical Property of Heat Storage Knitted Fabrics for High Emotional Garment (고감성 의류용 축열 니트소재의 물성)

  • Kim, Hyun Ah;Heo, Kyoung;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.17 no.2
    • /
    • pp.295-304
    • /
    • 2015
  • This paper investigated wear comfort property of heat storage knitted fabrics for high emotional garment. For this purpose, ZrC imbedded PET knitted fabric was prepared and various physical properties such as thermal, wicking and drying characteristics were measured. In addition, far-infrared emission characteristics of ZrC imbedded PET was analysed and tactile hand property and dye affinity of ZrC imbedded knitted fabric were also studied in comparison with regular and other commercial heat storage PET knitted fabrics. It was observed that Zr imbedded amount in the yarn was 19.29% by ingredient analysis and far-infrared emission energy was $3.65{\times}10^2W/m^2$, emissivity was 0.906 at the range of wavelength $6{\sim}20{\mu}m$. It was found that maximum heat flow (Qmax) of ZrC imbedded PET knitted fabric was lower than that of regular PET one and warmth keepability rate was higher than that of regular PET one, which means ZrC imbedded PET have heat storage property. Drying property of ZrC imbedded knitted fabric was better than that of regular PET one due to heat by far-infrared emitted from ZrC in the core of filament. It revealed that wicking property of the ZrC imbedded fabric was not influenced by far-infrared emission, but affected by fibre physical properties. Tactile hand property of ZrC imbedded knitted fabric was not influenced by imbedding ZrC in the filament but affected preferably by structure of knitted fabric. Dye affinity of ZrC imbedded PET knitted fabric was less influenced by dyeing temperature and time than regular PET knitted one.

Tensile Property Analysis of NCF Composite Laminated Structure for HP-CRTM Forming Process (HP-CRTM 성형공법을 적용하기 위한 NCF 복합재 적층구조에 따른 인장특성 분석)

  • Byeon, Ki-Seok;Shin, Yu-Jeong;Jeung, Han-Kyu;Park, Si-Woo;Roh, Chun-Su;Je, Jin-Soo;Kwon, Ki-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, the HP-CRTM method, which has the ability to produce carbon fiber-reinforce plastic composites at high speeds, has come into the spotlight in the automotive parts industry, which demands high productivity. Multi-axial carbon fabric, an intermediate material used in this HP-CRTM molding process, consists of layered fibers without crimp, which makes it better in terms of tensile and shear strength than the original woven fabrics. The NCF (non-crimp fabric) can form the layers of the carbon fiber, which have different longitudinal and lateral directions, and ${\pm}{\theta}$ degrees, depending on the product's properties. In this research, preforms were made with carbon fibers of ${\pm}45^{\circ}$ and $0/90^{\circ}$, which were lamination structures under seven different conditions, in order to create the optimal laminated structure for automobile reinforcement center floor tunnels. Carbon fiber composites were created using each of the seven differently laminated preforms, and polyurethane was used as the base material. The specimens were manufactured in accordance with the ASTM D3039 standards, and the effect of the NCF lamination structure on the mechanical properties was confirmed by a tensile test.