• Title/Summary/Keyword: analysis of seepage model

Search Result 99, Processing Time 0.025 seconds

A Study on Pore Water Pressure Behavior of Fill Dam with Water Level Raising using Centrifugal Model Tests (원심모형실험에 의한 수위상승시 필댐의 간극수압 거동 연구)

  • Lee, Chung-Won;Chang, Dong-Su;Park, Sung-Yong;Kim, Ki-Sung;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.87-95
    • /
    • 2013
  • The aim of this study is to examine the behavior of reservoir fill dam with the water level raising by use of the centrifugal model test and the numerical simulation. In this study, LIQCA2D-SF based on the cyclic elasto-plastic constitutive model proposed by Oka et al. (1999) is applied for numerical simulation. In order to investigate the displacements and the pore water pressures in the fill dam due to the water level raising velocity, three model tests in centrifugal field of 50g for fill dams were conducted. A comparison between the test result and the simulation result has provided the influence on the displacement and the pore water pressure of the fill dam with increasing up of the water level.

Geotechnical Hybrid Simulation System for the Quantitative Prediction of the Residual Deformation in the Liquefiable Sand During and After Earthquake Motion (액상화 가능 지반의 진동 도중 및 후의 잔류 변형에 대한 정량적 예측을 위한 하이브리드 시뮬레이션 시스템)

  • Kwon, Young Cheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.43-52
    • /
    • 2006
  • Despite several constitutive models have been proposed and applied, it is still difficult to choose a suitable model and to estimate adequate analysis parameters. Furthermore, a cyclic shear behavior under the volume change caused by the seepage is more complex. None of the constitutive model is available at present in the expression of the cyclic behavior of soil under an additional volume change condition by seepage. Therefore, a new geotechnical hybrid simulation system which can control the pore water immigration was developed. The system enables a quantitative evaluation of the residual deformation such as lateral spreading and settlement caused by the liquefaction. The seismic responses in a one-dimensional slightly inclined multilayered soil system are taken into consideration, and the soils are governed by both equation of motion and the continuity equation. Furthermore, the estimation and the selection of the soil parameter for the representation of the strong nonlinearity of the material are not required, because soil behaviors under the earthquake motions are directly introduced instead of a numerical soil constitutive model. This paper presents the concept and specifications of the system. By applying the system to an example problem, the permeability effect on the seismic response during cyclic shear is studied. The importance of the volume change characteristics of sandy soil during and after cyclic shear is shown in conclusion.

Behavior of failure of agricultural reservoir embankment due to overtopping (월류에 의한 저수지 제체의 붕괴 거동)

  • Lee, Dal-Won;Noh, Jae-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.427-439
    • /
    • 2012
  • In this study, an experiment with large-scale model was performed according to raising embankment in order to investigate the behaviour of failure due to overtopping. The pore water pressure, earth pressure and settlement by high water level, a rapid drawdown and overtopping were compared and analyzed. Also, seepage analysis and slope stability analysis were performed for steady state and transient conditions. The pore water pressure and earth pressure for inclined core type showed high value at the base of the core, but they showed no infiltration by leakage. The pore water pressure and earth pressure by overtopping increased at the upstream slope and core, it is considered a useful data that can accurately estimate the possibility of failure of the reservoir. The behavior of failure due to overtopping was gradually enlarged towards the downstream slope from reservoir crest, and the inclined core after the raising embankment was influenced significantly to prevent the reservoir failure. The pore water pressure distribution for steady state and transient condition showed positive (+) pore water pressure on the upstream slope, it was gradually changed negative (-) pore water pressure on the downstream slope. The pore water pressure by overtopping showed a larger than the high water level at the downstream slope, it was likely to be the piping phenomenon because the hydraulic gradients showed largely at the inclined core and reservoir crest. The safety factor showed high at the steady state, and transient conditions did not show differences depending on the rapid drawdown.

A Study on Consolidation Characteristic of Dredged Fill Using Geotechnical Centrifuge (원심모형시험에 의한 준설지반의 압밀특성연구)

  • Kim, Hee-Chul;Kim, Heung-Seok;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.45-55
    • /
    • 2008
  • In this study, the in-situ model test has been conducted to estimate and analyze consolidation behavior of the ground by using the miniature test that reconstructs economically geotechnical behavior of in-situ full scale structure. To analyze the relation of effective stress, void ratio and coefficient of permeability at the self-weight consolidation stage, the low stress seepage consolidation test has been conducted and the involution function of constitutive equation had been obtained from the result of the curve fitted seepage consolidation test. As a result of the numerical analysis that had been conducted on the representative section using a constitute equation, final settlement was similar to those of self-weight consolidation of the centrifugal model test. But it was more or less smaller. It seems that these trends are caused by the difference between estimated values.

Slope Instability Due to Rainfall (강우로 인한 사면 불안정)

  • 김상규;김영묵
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-68
    • /
    • 1991
  • This paper aims at the investigation of various seepage behavior when rainfall infiltarates into unsaturated ground and understanding of the mechanism for slope instability due to rainfall. For this purpose an experimental study is carried out for model slopes using the test equipment which can simulate various rainfall intensity. In addition, a numerical study is performed for the same dimension and boundary condition as the experimental model. From both the experimental test and numerical analysis the progress of wetting front with time, critical amounts of rainfall, and pore-water pressure development with time are know in detail and their effects on slope stability are described.

  • PDF

Application of UAV images for rainfall-induced slope stability analysis in urban areas

  • Dohyun Kim;Junyoung Ko;Jaehong Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.167-174
    • /
    • 2023
  • This study evaluated slope stability through a case study to determine the disaster risks associated with increased deforestation in structures, including schools and apartments, located in urban areas adjacent to slopes. The slope behind the ○○ High School in Gwangju, Korea, collapsed owing to heavy rain in August 2018. Historically, rainwater drained well around the slope during the rainy season. However, during the collapse, a large amount of seepage water flowed out of the slope surface and a shallow failure occurred along the saturated soil layer. To analyze the cause of the collapse, the images of the upper area of the slope, which could not be directly identified, were captured using unmanned aerial vehicles (UAVs). A digital elevation model of the slope was constructed through image analysis, making it possible to calculate the rainfall flow direction and the area, width, and length of logging areas. The change in the instability of the slope over time owing to rainfall lasting ten days before the collapse was analyzed through numerical analysis. Imaging techniques based on the UAV images were found to be effective in analyzing ground disaster risk maps in urban areas. Furthermore, the analysis was found to predict the failure before its actual occurrence.

Analysis of a Weak Zone in Embankment Close to a Drainage using Resistivity Monitoring Data (전기비저항 모니터링을 이용한 저수지 제체 취수시설 취약성 해석)

  • Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.8-14
    • /
    • 2018
  • For the purpose of maintenance and prevention of earth fill dams against damage from natural hazards, automatic monitoring through various measuring instruments and resistivity survey has been carried out. Reservoirs and embankments have the structural vulnerability on the agricultural usages since most of them were built more than thirty years ago. The main aim to use monitoring method is to verify the safety and integrity of the dam. Resistivity survey can detect potential weaknesses, such as defective zones, anomalous seepages or internal erosion processes. Permanent resistivity monitoring systems were installed at a reservoir, which daily measurements have been taken every 6 hour. Using monitoring data for one year, anomalous seepage and structural defects were clarified for dam safety. Annual water level fluctuations are around 10 m. During their operation, reservoir dams are subject to a never-ending hydraulic load from the reservoir, which over the years may cause changes in the properties of the inner parts of the dam construction. Detailed analysis of the monitoring results was performed and showed that resistivities at most locations have been very stable over the full monitoring period excluding the effects of water fluctuation and seasons. To investigate the detectability of weak zone using the DC resistivity monitoring, numerical modeling with a simplified model for the drainage at a reservoir dam was also performed. The results showed that the seepage zone near drainage in a reservoir dam could be detected by resistivity response change.

A Prediction of the Mobilized Tensile Forces of Nailed -Soil Excavated Walls (Nailed -Soil 굴착벽체의 발휘인장력 예측)

  • 김홍택;성안제
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.79-98
    • /
    • 1995
  • In the present study an analytical modeling was carried out to predict mobilized shear strength at the interface between the nail and surrounding soils by carefully examining the behavior characteristics of nailed boil excavated walls. Based on the developed model of mobilized shear strength, the method of overall stability analysis of nailed -soil walls was also developed using the Morgentern -Price limit -equilibrium slice method. The developed analytical procedure could predict the behaviors of nailed -soil excavated walls during the successive excavation stages, at the final stage of construction and post -construction stages. To verify the validity of the developed model and method of stability analysis, mobilized tensile forces of nails and overal stability estimated by the developed procedure were compared with test measurements from three nailed -soil experimental walls having different soil conditions. The effect of seepage pressures inside the soil mass was considered in the developed procedure.

  • PDF

Levee Stability Assessment Depending on Levee Shape and Flood Wave (제방형상과 홍수파형에 의한 제방의 파이핑 안정성 평가)

  • Kang, Taeun;An, Hyunuk;Lee, Gwangman;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.307-319
    • /
    • 2014
  • Because of the rapid rising of water related disasters due to the global warming, the extreme design criteria of levee construction for severe flood has been applied in several developed countries such as USA and Netheland. In Korea, the national river restoration projects were carried out on 4 major rivers in recent several years. The projects consisted of riverbed dredge and levee reinforcement, and new construction have caused wide change of river environment. However, concrete countermeasures for levee safety and river management have not been suggested until now. Therefore, this study assesses the levee safety of Yulji levee located in Hoechon, Nakdong Basin, where the Levee Seepage Monitoring System installed. The stability of levee is assessed based on the simulation performed by SEEP/W(2D unsaturated seepage model) and the simulated results are compared with the observed data. The effects of the flood wave and levee shape on the levee safety are investigated through several simulations.

Numerical Analysis of Rainfall Induced Landslide Dam Formation

  • Do, Xuan Khanh;Regmi, Ram Krishna;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.245-245
    • /
    • 2015
  • In the recent years, due to long-lasting heavy rainfall events, a large number of landslides have been observed in the mountainous area of the world. Such landslides can also form a dam as it blocks the course of a river, which may burst and cause a catastrophic flood. Numerical analysis of landslide dam formation is rarely available, while laboratory experimental studies often use assumed shape to analyze the landslide dam failure and flood hydraulics in downstream. In this study, both experimental and numerical studies have been carried out to investigate the formation of landslide dam. Two case laboratory experiments were conducted in two flumes simultaneously. The first flume (2.0 m 0.6 m 0.5 m) was set at $22^{\circ}$ and $27^{\circ}$ slope to generate the landslide using rainfall intensity of 70.0 mm/hr. On the other hand, the second flume (1.5 m 0.25 m 0.3 m) was set perpendicularly at the downstream end of the first flume to receive the landslide mass forming landslide dam. The formation of landslide dam was observed at $15^{\circ}$ slope of the second flume. The whole processes including the landslide initiation and movement of the landslide mass into the second channel was captured by three digital cameras. In numerical analysis, a two-dimensional (2D) seepage flow model, a 2D slope stability model (Spencer method) and a 2D landslide dam-geometry evaluation model were coupled as a single unit. This developed model can determine the landslide occurrence time, the failure mass and the geometry of landslide dam deposited in the second channel. The data obtained from numerical simulation results has good agreement with the experimental measurements.

  • PDF