• Title/Summary/Keyword: analysis of algorithms

Search Result 3,548, Processing Time 0.034 seconds

Velocity profile generation methods for industrial robots and CNC machine tools

  • Kim, Dong-Il;Song, Jin-Il;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.306-311
    • /
    • 1992
  • We propose software algorithms which provide the characteristics of acceleration/deceleration essential to high dynamic performance at the transient state where industrial robots or CNC machine tools start and stop. The path error, which is one of the most significant factors in performance evaluation of industrial robots and CNC machine tools, is analyzed for linear, exponential, and parabolic acceleration/deceleration algorithms in case of circular interpolation. The analysis shows that the path error depends on the acceleration/deceleration routine and the servo control system. In experiments, the entire control algorithm including the proposed acceleration/deceleration algorithms is executed on the motion control system with a floating point digital signal processor(DSP) TMS320C30 as a CPU. The experimental results demonstrate that the proposed algorithms are very effective in controlling axes of motion of industrial robots or CNC machine tools with the desired characteristics.

  • PDF

A Quantitative Approach to Minimize Energy Consumption in Cloud Data Centres using VM Consolidation Algorithm

  • M. Hema;S. KanagaSubaRaja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.312-334
    • /
    • 2023
  • In large-scale computing, cloud computing plays an important role by sharing globally-distributed resources. The evolution of cloud has taken place in the development of data centers and numerous servers across the globe. But the cloud information centers incur huge operational costs, consume high electricity and emit tons of dioxides. It is possible for the cloud suppliers to leverage their resources and decrease the consumption of energy through various methods such as dynamic consolidation of Virtual Machines (VMs), by keeping idle nodes in sleep mode and mistreatment of live migration. But the performance may get affected in case of harsh consolidation of VMs. So, it is a desired trait to have associate degree energy-performance exchange without compromising the quality of service while at the same time reducing the power consumption. This research article details a number of novel algorithms that dynamically consolidate the VMs in cloud information centers. The primary objective of the study is to leverage the computing resources to its best and reduce the energy consumption way behind the Service Level Agreement (SLA)drawbacks relevant to CPU load, RAM capacity and information measure. The proposed VM consolidation Algorithm (PVMCA) is contained of four algorithms: over loaded host detection algorithm, VM selection algorithm, VM placement algorithm, and under loading host detection algorithm. PVMCA is dynamic because it uses dynamic thresholds instead of static thresholds values, which makes it suggestion for real, unpredictable workloads common in cloud data centers. Also, the Algorithms are adaptive because it inevitably adjusts its behavior based on the studies of historical data of host resource utilization for any application with diverse workload patterns. Finally, the proposed algorithm is online because the algorithms are achieved run time and make an action in response to each request. The proposed algorithms' efficiency was validated through different simulations of extensive nature. The output analysis depicts the projected algorithms scaled back the energy consumption up to some considerable level besides ensuring proper SLA. On the basis of the project algorithms, the energy consumption got reduced by 22% while there was an improvement observed in SLA up to 80% compared to other benchmark algorithms.

Effect of Changing the Basis in Genetic Algorithms Using Binary Encoding

  • Kim, Yong-Hyuk;Yoon, You-Rim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.4
    • /
    • pp.184-193
    • /
    • 2008
  • We examine the performance of genetic algorithms using binary encoding, with respect to a change of basis. Changing the basis can result in a change in the linkage structure inherent in the fitness function. We test three simple functions with differing linkage strengths and analyze the results. Based on an empirical analysis, we show that a better basis results in a smoother fitness landscape, hence genetic algorithms based on the new encoding method provide better performance.

Performance Comparison of Classification Algorithms in Music Recognition using Violin and Cello Sound Files (바이올린과 첼로 연주 데이터를 이용한 분류 알고리즘의 성능 비교)

  • Kim Jae Chun;Kwak Kyung sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5C
    • /
    • pp.305-312
    • /
    • 2005
  • Three classification algorithms are tested using musical instruments. Several classification algorithms are introduced and among them, Bayes rule, NN and k-NN performances evaluated. ZCR, mean, variance and average peak level feature vectors are extracted from instruments sample file and used as data set to classification system. Used musical instruments are Violin, baroque violin and baroque cello. Results of experiment show that the performance of NN algorithm excels other algorithms in musical instruments classification.

The Performance Analysis of Burst Error Elimination CVDF Algorithm Using Switching Remote Direction Finding Antenna in VHF (VHF대역에서 원격운용 방향탐지안테나 소자의 스위칭에 의한 상관벡터방향탐지 버스트에러 제거 알고리즘 성능분석)

  • Won, Jong-Mook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.129-138
    • /
    • 2007
  • Recently, Direction Finding(DF) System is using switching DF algorithm to reduce system-weight by eliminating RF cable as much as possible. Also, Correlation Vector Direction Finding(CVDF) algorithms is being used for Fast Direction finding in tactical environment. In this paper, I will give you burst error elimination algorithms and compare the performance in case we use switching CVDF algorithm. Although antenna array is not working, we will successfully perform direction finding when we use this burst error elimination algorithms. Also, we will be completely capable of DF mission despite of meeting the unwanted situation that the monitoring signal disappear in case we use Switching Direction Finding algorithms. That situation frequently occurs under the Frequency Hopping signal circumstances.

A Study on Approximate and Exact Algorithms to Minimize Makespan on Parallel Processors (竝列處理機械상에서 總作業完了時間의 最小化解法에 관한 硏究)

  • Ahn, Sang-Hyung;Lee, Song-Kun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.14-35
    • /
    • 1991
  • The purpose of this study is to develop an efficient exact algorithm for the problem of scheduling n in dependent jobs on m unequal parallel processors to minimize makespan. Efficient solutions are already known for the preemptive case. But for the non-preemptive case, this problem belongs to a set of strong NP-complete problems. Hence, it is unlikely that the polynomial time algorithm can be found. This is the reason why most investigations have bben directed toward the fast approximate algorithms and the worst-case analysis of algorithms. Recently, great advances have been made in mathematical theories regarding Lagrangean relaxation and the subgradient optimization procedure which updates the Lagrangean multipliers. By combining and the subgradient optimization procedure which updates the Lagrangean multipliers. By combining these mathematical tools with branch-and-bound procedures, these have been some successes in constructing pseudo-polynomial time algorithms for solving previously unsolved NP-complete problems. This study applied similar methodologies to the unequal parallel processor problem to find the efficient exact algorithm.

  • PDF

A Study on Approximate and Exact Algorithms to Minimize Makespan on Parallel Processors (병렬처리리례 상에서 동작업완료시간의 최소화해법에 관한 연구)

  • Ahn, Sang-Hyung;Lee, Song-Kun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.13-35
    • /
    • 1991
  • The purpose of this study is to develop an efficient exact algorithm for the problem of scheduling n in dependent jobs on m unequal parallel processors to minimize makespan. Efficient solutions are already known for the preemptive case. But for the non-preemptive case, this problem belongs to a set of strong NP-complete problems. Hence, it is unlikely that the polynomial time algorithm can be found. This is the reason why most investigations have bben directed toward the fast approximate algorithms and the worst-case analysis of algorithms. Recently, great advances have been made in mathematical theories regarding Lagrangean relaxation and the subgradient optimization procedure which updates the Lagrangean multipliers. By combining and the subgradient optimization procedure which updates the Lagrangean multipliers. By combining these mathematical tools with branch-and-bound procedures, these have been some successes in constructing pseudo-polynomial time algorithms for solving previously unsolved NP-complete problems. This study applied similar methodologies to the unequal parallel processor problem to find the efficient exact algorithm.

  • PDF

Evolutionary Analysis for Continuous Search Space (연속탐색공간에 대한 진화적 해석)

  • Lee, Joon-Seong;Bae, Byeong-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, the evolutionary algorithm was specifically formulated for optimization with continuous parameter space. The proposal was motivated by the fact that the genetic algorithms have been most intensively reported for parameter identification problems with continuous search space. The difference of primary characteristics between genetic algorithms and the proposed algorithm, discrete or continuous individual representation has made different areas to which the algorithms should be applied. Results obtained by optimization of some well-known test functions indicate that the proposed algorithm is superior to genetic algorithms in all the performance, computation time and memory usage for continuous search space problems.

ALOHA-type Anti-collision Algorithms Using Tag Estimation Method in RFID system (RFID 시스템에서의 태그 수를 추정하는 ALOHA 방시 Anti-collision 알고리즘)

  • Cha Jae-Ryong;Kim Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.814-821
    • /
    • 2005
  • When there are many tags using the same frequency around the reader in RFID system, they disturb each other and in the end their response cannot be received by the reader. To solve this disturbance and fast identify the tags, the anti-collision algorithm, which is the core technology in RFID system, is needed. We propose two ALOHA-type Dynamic Framed Slotted ALOHA(DFS-ALOHA) algorithms using Dynamic Slot Allocation(DSA), which dynamically allocates the frame size in accordance with the number of tags and Tag Estimation Method(TEM), which estimates the number of tags around the reader. We also compare the performance of the proposed DFS-ALOHA algorithms with that of the conventional Framed Slotted ALOHA (FS-ALOHA) algorithms and the algorithms proposed by Vogt using OPNET simulation. According to the analysis, the two proposed DFS-ALOHA algorithms(DFS-ALOHA I and DFS-ALOHA II) show better performance than the conventional ALOHA-based algorithms regardless of the number of tags. Although the two proposed DFS-ALOHA algorithms show the similar performance, BFS-ALOHA ll is better because it is easier to be implemented in the system and the complexity is lower.

Pooling Variance Tests Using Expected Mean Square in Split-Plot Designs (분할법에서 EMS알고리즘을 이용한 풀링분산검정)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2008
  • The research proposes three ANOVA(Analysis of Variance) tests using expected mean square(EMS) algorithms in various split-plot designs. The variance tests consist of Never-Pool test, Sometimes-Pool test and Always-Pool test. This paper also presents two EMS algorithms such as standard method and easy method. These algorithms are useful to make a decision rule for pooling. Numerical examples are illustrated for various split-plot designs such as split-plot designs, split-split-plot designs, repetition split-plot designs, and nested designs. Pragmatically, the results are summarized and compared with popular ANOVA spreadsheets and data model equations.