• Title/Summary/Keyword: analysis methodology

Search Result 9,353, Processing Time 0.034 seconds

A Study on Factor Analytical Methods and Procedures for PLS-SEM (Partial Least Squares Structural Equation Modeling)

  • YIM, Myung-Seong
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.5
    • /
    • pp.7-20
    • /
    • 2019
  • Purpose - This study provides appropriate procedures for EFA to help researchers conduct empirical studies by using PLS-SEM. Research design, data, and methodology - This study addresses the absolute and relative sample size criteria, sampling adequacy, factor extraction models, factor rotation methods, the criterion for the number of factors to retain, interpretation of results, and reporting information. Results - The factor analysis procedure for PLS-SEM consists of the following five stages. First, it is important to look at whether both the Bartlett test of sphericity and the KMO MSA meet the qualitative criteria. Second, PAF is a better choice of methodology. Third, an oblique technique is a suitable method for PLS-SEM. Fourth, a combined approach is strongly recommended to factor retention. PA should be used at the onset. Next, it is recommended using the K1 criterion. In addition, it is necessary to extract factors that increase the total variance explanatory power through the PVA-FS. Finally, it is appropriate to select an item with a factor loading into 0.5 or higher and a communality of 0.5. Conclusions - It is expected that the accurate factor analysis processed for PLS-SEM as previously presented will help us extract more precise factors of the structural model.

Investigation of the numerical analysis for the ultrasonic vibration in the injection molding

  • Lee, Jae-Yeol;Kim, Nak-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • We studied the flow characteristics of the polymer melt in the injection molding process with ultrasonic vibration by using the numerical analysis. To minimize the error between the experimental data and numerical result, we presented a methodology using the design of experiments and the response surface method for reverse engineering. This methodology can be applied to various fields to obtain a valid and accurate numerical analysis. Ultrasonic vibration is generally applied between an extruder and the entrance of a mold for improvement the flow rate in injection molding. In comparison with the general ultrasonic process, the mode shape of the mold must be also considered when the ultrasonic vibration is applied on the mold. The mode shape is defined as the periodic and spatial deformation of the structure owing to the effect of the vibration, and it varies greatly according to vibration conditions such as the forcing frequency. Therefore, we considered new index and found the forcing frequency for obtaining the highest flow rate within the range from 20 to 60 kHz on the basis of the index. Ultimately, we presented the methodology for not only obtaining a valid and accurate numerical analysis, but also for finding the forcing frequency to obtain the highest flow rate in injection molding using ultrasonic vibration.

Aseismic protection of historical structures using modern retrofitting techniques

  • Syrmakezis, C.A.;Antonopoulos, A.K.;Mavrouli, O.A.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.233-245
    • /
    • 2008
  • For historical masonry structures existing in the Mediterranean area, structural strengthening is of primary importance due to the continuous earthquake threat that is posed on them. Proper retrofitting of historical structures involves a thorough understanding of their structural pathology, before proceeding with any intervention measures. In this paper, a methodology is presented for the evaluation of the actual state of historical masonry structures, which can provide a useful tool for the seismic response assessment before and after the retrofitting. The methodology is mainly focused on the failure and vulnerability analysis of masonry structures using the finite element method. Using this methodology the retrofitting of historical structures with innovative techniques is investigated. The innovative technique presented here involves the exploitation of Shape Memory Alloy prestressed bars. This type of intervention is proposed because it ensures increased reversibility and minimization of interventions, in comparison with conventional retrofitting methods. In this paper, a case study is investigated for the demonstration of the proposed methodologies and techniques, which comprises a masonry Byzantine church and a masonry Cistern. Prestressed SMA alloy bars are placed into the load-bearing system of the structure. The seismic response of the non-retrofitted and the retrofitted finite element models are compared in terms of seismic energy dissipation and displacements diminution.

Determination of Shoulder Height for Ball Bearing using Contact Analysis (접촉해석을 이용한 볼 베어링의 Shoulder Height 결정)

  • Kim Tae-Wan;Cho Yong-Joo;Yoon Ki-Chan;Park Chang-Nam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.377-383
    • /
    • 2003
  • In this study, the methodology for determination of shoulder height in the internal shape design of ball bearing using 3D contact analysis is proposed. The quasi-static analysis of a ball bearing was performed to calculate the distribution of applied contact load and angles among the rolling elements. From each rolling element loads and the contact geometry between ball and inner/outer raceway, 3D contact analyses using influence function are conducted. These methodology is applied to HDD ball bearing. The critical axial load and the critical shoulder height which are not affected by edge in the present shoulder height is calculated. The proposed methodology may be applied to other rolling element bearing for the purpose of reducing the material cost and improving the efficiency of the bearing design process.

  • PDF

OPTIMIZATION OF THE PARAMETERS OF FEEDWATER CONTROL SYSTEM FOR OPR1000 NUCLEAR POWER PLANTS

  • Kim, Ung-Soo;Song, In-Ho;Sohn, Jong-Joo;Kim, Eun-Kee
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.460-467
    • /
    • 2010
  • In this study, the parameters of the feedwater control system (FWCS) of the OPR1000 type nuclear power plant (NPP) are optimized by response surface methodology (RSM) in order to acquire better level control performance from the FWCS. The objective of the optimization is to minimize the steam generator (SG) water level deviation from the reference level during transients. The objective functions for this optimization are relationships between the SG level deviation and the parameters of the FWCS. However, in this case of FWCS parameter optimization, the objective functions are not available in the form of analytic equations and the responses (the SG level at plant transients) to inputs (FWCS parameters) can be evaluated by computer simulations only. Classical optimization methods cannot be used because the objective function value cannot be calculated directely. Therefore, the simulation optimization methodology is used and the RSM is adopted as the simulation optimization algorithm. Objective functions are evaluated with several typical transients in NPPs using a system simulation computer code that has been utilized for the system performance analysis of actual NPPs. The results show that the optimized parameters have better SG level control performance. The degree of the SG level deviation from the reference level during transients is minimized and consequently the control performance of the FWCS is remarkably improved.

Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM (섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용)

  • Lee, Hyun Sang;Jo, Bo Geun;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.30 no.3
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

Probability-based prediction of residual displacement for SDOF using nonlinear static analysis

  • Feng, Zhibin;Gong, Jinxin
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.571-584
    • /
    • 2022
  • The residual displacement ratio (RDRs) response spectra have been generally used as an important means to evaluate the post-earthquake repairability, and the ratios of residual to maximum inelastic displacement are considered to be more appropriate for development of the spectra. This methodology, however, assumes that the expected residual displacement can be computed as the product of the RDRs and maximum inelastic displacement, without considering the correlation between these two variables, which inevitably introduces potential systematic error. For providing an adequately accurate estimate of residual displacement, while accounting for the collapse resistance performance prior to the repairability evaluation, a probability-based procedure to estimate the residual displacement demands using the nonlinear static analysis (NSA) is developed for single-degree-of-freedom (SDOF) systems. To this end, the energy-based equivalent damping ratio used for NSA is revised to obtain the maximum displacement coincident with the nonlinear time history analysis (NTHA) results in the mean sense. Then, the possible systematic error resulted from RDRs spectra methodology is examined based on the NTHA results of SDOF systems. Finally, the statistical relation between the residual displacement and the NSA-based maximum displacement is established. The results indicate that the energy-based equivalent damping ratio will underestimate the damping for short period ranges, and overestimate the damping for longer period ranges. The RDRs spectra methodology generally leads to the results being non-conservative, depending on post-yield stiffness. The proposed approach emphasizes that the repairability evaluation should be based on the premise of no collapse, which matches with the current performance-based seismic assessment procedure.

A New Methodology for the Assessment of Liquefaction Potential Based on the Dynamic Characteristics of Soils (II) : Verification (지반의 동적특성에 기초한 액상화 평가법 (II) : 타당성 검토)

  • 최재순;홍우석;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2002
  • In this study, a new methodology fur the assessment of liquefaction potential is proposed and characteristics of the proposed methodology are verified. The experimental parameter of this methodology, that is, the plastic shear strain trajectory, is compared with the dissipated energy. It is shown that this parameter can express the liquefaction behavior which is generated by excess pore water pressure. This methodology takes advantage of the shear strain time history determined from the site response analysis based on the real time history of earthquake. In this site response analysis, shock type and vibration type records of similar predominant frequency are inputted. The liquefaction safely factors based on the proposed methodology and Korean detailed assessment related to the classical method are calculated from the results of the site response analysis and laboratory dynamic tests. Through this study, it is found that the proposed methodology can not only simulate the liquefaction behavior of saturated soils hut also express the seismic characteristics reasonably : leading type, predominant frequency, maximum acceleration, duration time.

AGAPE-ET: A Predictive Human Error Analysis Methodology for Emergency Tasks in Nuclear Power Plants (원자력발전소 비상운전 직무의 인간오류분석 및 평가 방법 AGAPE-ET의 개발)

  • 김재환;정원대
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.104-118
    • /
    • 2003
  • It has been criticized that conventional human reliability analysis (HRA) methodologies for probabilistic safety assessment (PSA) have been focused on the quantification of human error probability (HEP) without detailed analysis of human cognitive processes such as situation assessment or decision-making which are crticial to successful response to emergency situations. This paper introduces a new human reliability analysis (HRA) methodology, AGAPE-ET (A guidance And Procedure for Human Error Analysis for Emergency Tasks), focused on the qualitative error analysis of emergency tasks from the viewpoint of the performance of human cognitive function. The AGAPE-ET method is based on the simplified cognitive model and a taxonomy of influencing factors. By each cognitive function, error causes or error-likely situations have been identified considering the characteristics of the performance of each cognitive function and influencing mechanism of PIFs on the cognitive function. Then, overall human error analysis process is designed considering the cognitive demand of the required task. The application to an emergency task shows that the proposed method is useful to identify task vulnerabilities associated with the performance of emergency tasks.

Gamification Development Methodology - Design and Comparative Analysis of 4F Process (게이미피케이션 개발 방법론 - 4F Process 설계 및 비교 분석)

  • Park, Sungjin;Kim, Sangkyun
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1131-1144
    • /
    • 2018
  • The Purpose of this study is to propose 4F Process, which is one of the development methodology of the gamification. For the effectiveness analysis of the 4F Process, game and gamification related theories are applied and conducted comparative analysis with the published gamification development methodology. This studies results show that the 4F Process is a relatively high level of perfection of gamification development methodology than eight of published methodologies by found out this study team. But, there was a complementary point in the 4F Process. Based on results of this study, this study mentioned the pros and coms of the 4F Process and suggested the step-by-step guideline as a necessary element for the gamification development methodology.