• Title/Summary/Keyword: anaerobic acid fermentation

Search Result 135, Processing Time 0.027 seconds

The Effect of Vegetable Sources Supplementation on In vitro Ruminal Methane Gas Production (식물원료 첨가가 In vitro 반추위 메탄가스 발생에 미치는 영향)

  • Yang, Seung-Hak;Lee, Se-Young;Cho, Sung-Back;Park, Kyu-Hyun;Park, Joong-Kook;Choi, Dong-Yoon;Yoo, Yong-Hee
    • Journal of Animal Environmental Science
    • /
    • v.17 no.3
    • /
    • pp.171-180
    • /
    • 2011
  • The researchers have tried to reduce ruminal methane gas ($CH_4$) and to convert it into beneficial nutrient for several decades. This study was conducted to screen the methane-reducing vegetables among lettuce, hot pepper, spring onion, onion, turmeric, sesame leaf, garlic, radish sprout, leek and ginger nutritiously on the in vitro ruminal fermentation. The heat-treated vegetables at the 10% of substrate (timothy) were used to reduce methane production on the in vitro anaerobic experiment of 0, 6, 12, 24 and 48 h incubation time. Total gas production, pH, ammonia, $H_2$, $CO_2$, $CH_4$, and volatile fatty acid (VFA) were measured as indicators of in vitro fermentation product containing methane gas. All treatments except garlic showed a tendency to increase in total gas production. The result of ammonia showed that garlic and hot pepper affected rumen bacteria concerned protein metabolism and that lettuce and spring onion increased ammonia production. Garlic decreased $CH_4$ production in inverse proportion to $H_2$. Lettuce, spring onion, onion, garlic, radish sprout, leek and ginger increased propionate of VFA. Garlic balanced the ruminal fermentation in the pH, $H_2$, $CH_4$, acetate and propionate. This results showed that methane production at in vitro study was inhibited by heat-treated garlic supplementation. In conclusion, this study suggests that ruminal fermentation covering methane production might be controled by proper vegetables.

The Process Efficiency Evaluation of the Food Supernatant Using A/G (Acid/Gas) Phased Anaerobic Digestion (산/가스 분리 혐기소화공정을 이용한 음식물 탈리액의 처리효율 평가)

  • Bae, Jong-Hun;Park, Noh-Back;Tian, Dong-Jin;Jun, Hang-Bae;Yang, Seok-Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.214-222
    • /
    • 2012
  • Several acidogenesis batch tests, and BMP (Biochemical Methane Potential) with food waste leachate was tested at various organic loading rates (OLRs) on the mesophilic ($35^{\circ}C$) and thermophilic ($55^{\circ}C$) conditions. In acidogenesis batch test, VS removal efficiencies were 27.3% and 30.6% at $35^{\circ}C$ and $55^{\circ}C$, respectively. Removal efficiency of VS at $55^{\circ}C$ was higher than that at $35^{\circ}C$. With decrease in VS, SCOD increased as reaction time increased. Solubilization efficiency of VS were 27.4% and 33.4% at each reaction temperature within 4 days acid fermentation. Methane yield were 461 and 413 $mLCH_4/gVS$ at mesophilic and thermophilic BMP test, respectively. SCOD solubilizations in the themophilic acid fermenter showed 8~17% higher than those in the mesophilic fermenter. COD removal efficiency showed higher in the mesophilic acid fermenter at low organic loading rate. While at high organic loading rate, it was higher in the thermophilic acid fermenter. VS removal efficiency was higher at the mesophilic temperature, however, it decreased at OLR higher than 6 kg $COD/m^3{\cdot}day$. On the contrary, VS removal efficiency did not decrease but maintain at thermophilic temperature. The amount of methane gas generated from mesophilic methanogenesis digester was 12.6, 21.6, 27.4 L/day at OLR of 4, 5, 6 $COD/m^3{\cdot}day$, respectively. The amount of methane gas generated from themophilic methanogenesis digester was 14.3, 20.6, 25.2 L/day at each OLR, respectively, which is about 15~20 L/day lower than those generated at mesophilic digester.

Characteristics of Anaerobic Acid Fermentation with Food waste leachate by Reactor Type of Retention Time for Landfill Site Injection (매립지 주입을 위한 음폐수 산발효 시 반응기 형태와 체류시간에 따른 특성)

  • Moon, Kwangseok;Kim, Jaehyung;Koo, Hyemin;Lim, Junhyuk;Kim, Nakjoo;Chang, Wonseok;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.125-131
    • /
    • 2014
  • In order to increase landfill gas (LFG) production with food waste leachate, this study was confirmed to be acidogenetic conditions for landfill site injection. Thereby, it was conducted for acidogenetic treatments to determine the decrease in viscosity and VFA production. After acidogenesis treatments, solubility of food waste leachate increased approximately 15%, and as a result, UASB and CSTR were similar by reactor type using the change of retention time. Based on the result of the change in viscosity by reactor type, efficiency of UASB showed approximately 11.38% of higher decrease in viscosity as $76.95{\pm}3.27%$ vs. CSTR. Also, VFA production showed the higher increase of 2.01 times (UASB) and 1.76 times (CSTR) respectively at the point of increasing retention time from 3 to 5 days. From the above results, efficiency of UASB in a reactor was relatively higher because large molecular lead to longer retention time than small molecular due to having screen effect in the fixed media.

A Study on Characteristics of Solubilization and Biogas Production for Sewage Sludge using Thermal Pretreatment (열적가용화공정을 이용한 하수슬러지의 가용화 특성 및 바이오가스 생산량 평가)

  • Jeong, Seong-Yeob;Yeon, Ho-Suk;Lee, Chang-Yeol;Lee, Jong-In;Chang, Soon-Woong
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.46-54
    • /
    • 2015
  • In this study, an applicability of thermal pretreatment for primary and secondary sludge, which are generated in a sewage treatment plant, was evaluated. The efficiency and charateristics was investigated with each sludge after pretreatment under the condition of $100{\sim}220^{\circ}C$ for 30 minutes. As the result, it was found that $SCOD_{Cr}$, $NH_4{^+}$, VFAs concentrations increased as the pre-treatment temperature increased. For COD solubilization, it was also highly dependent on an increase of temperature resulting in acceleration on hydrolysis and acid fermentation. In the BMP (Biochemical Methane Potential) experiment, for the primary sludge, it showed the higher biogas production rate at a temperature of $220^{\circ}C$, however, the effect was insignificant (5.6%). Whereas, for the secondary sludge, the increase on biogass production rate was 38.8% ($180^{\circ}C$) and this means that the secondary sludge is more suitable for an applicability of thermal pretreatment.

Effect of Sodium Butyrate on Blood Glucose, Serum Lipid Profile and Inflammation in Streptozotocin-induced Diabetic Mice (스트렙토조토신으로 유도한 당뇨마우스에서 Sodium Butyrate의 혈당, 혈청 지질 성상 및 염증 억제에 미치는 영향)

  • Yun, Jung-Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.2
    • /
    • pp.171-177
    • /
    • 2015
  • Sodium butyrate is a short-chain fatty acid derivative found in foods, such as Parmesan cheese and butter and is produced by anaerobic bacteria fermentation of dietary fibers in the large intestine. There have been reports that butyrate prevented obesity, protected insulin sensitivity, and ameliorated dyslipidemia in dietary obese mice. This study investigated the effects of sodium butyrate on fasting blood glucose level and serum lipid profile in streptozotocin(STZ)-induced diabetic mice. Male C57BL/6 mice were fed AIN-93G for four weeks prior to intraperitoneal injections with STZ (100 mg/kg body weight). Diabetic mice had supplements of 5% sodium butyrate for four weeks. The 5% sodium butyrate diet significantly improved fasting blood glucose level and lipid profile in STZ-induced diabetic mice. Inflammation has been recognized to decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can directly affect beta cell function, leading to secretory dysfunction and increased apoptosis. Thus, anti-inflammatory therapies represented a potential approach for the therapy of diabetes and its complications. In this animal study, the 5% sodium butyrate supplementation also inhibited inflammatory cytokine production in STZ-induced diabetic mice. These results suggested that sodium butyrate can be a potential candidate for the prevention of diabetes and its complications.