• Title/Summary/Keyword: anaerobic

Search Result 2,381, Processing Time 0.028 seconds

Effects of Organic Content on Anaerobic Biodegradability of Sludge Generating from Slaughterhouse

  • Oh, Seung-Yong;Kim, Ho;Kim, Chang-Hyun;Kim, Seung-Hwan;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.296-302
    • /
    • 2013
  • This study was carried out to investigate the effect of organic content level on ultimate methane potential and anaerobic biodegradability of substrate by biochemical methane potential assay. Three organic matters (whole sludge and liquid and solid fraction of sludge) of the same origin, which had different organic contents, were fermented at the batch anaerobic reactor for 70 days. Ultimate methane potential and anaerobic biodegradability were determined by the terms of volatile solid (VS) and chemical oxygen demand (COD). Volatile solid contents of whole sludge and solid and liquid fraction of sludge were 2.4, 18.8, and 0.2% and COD were 5.3, 30.4, and 0.5%, respectively. Ultimate methane potentials ($B_u$-COD) and anaerobic biodegradability ($D_{VS}$) determined by VS content were $0.5Nm^3kg^{-1}-VS_{added}$, 76.3% for whole sludge, $0.5Nm^3kg^{-1}-VS_{added}$, 76.3% for the liquid fraction of sludge, and $0.6Nm^3kg^{-1}-VS_{added}$, 77.0% for the solid fraction of sludge. Ultimate methane potentials ($B_u$-COD) and anaerobic biodegradability ($D_{COD}$) determined by COD were $0.2Nm^3kg^{-1}-COD_{added}$, 73.4% for whole sludge, $0.2Nm^3kg^{-1}-VS_{added}$, 74.0% for the liquid fraction of sludge, and $0.33Nm^3kg^{-1}-COD_{added}$, 99.1% for the solid fraction of sludge. In conclusion, ultimate methane potential and anaerobic biodegradability given by the VS term showed more reasonable results because COD might be underestimated by the interference of $NH_4{^+}$ in the case of highly concentrated organic material.

Microbial Communities and Diversities in a Full-Scale Mesophilic Anaerobic Digester Treating Sewage Sludge (하수슬러지 처리 실규모 중온 혐기성 소화조 미생물 군집 및 다양성 조사)

  • Minjae Kim;Suin Park;Juyun Lee;Hyebin Lee;Seonmin Kang;Hyokwan Bae;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1051-1059
    • /
    • 2022
  • This study investigated microbial communities and their diversity in a full-scale mesophilic anaerobic digester treating sewage sludge. Influent sewage sludge and anaerobic digester samples collected from a wastewater treatment plant in Busan were analyzed using high-throughput sequencing. It was found that the microbial community structure and diversity in the anaerobic digester could be affected by inoculation effect with influent sewage sludge. Nevertheless, distinct microbial communities were identified as the dominant microbial communities in the anaerobic digester. Twelve genera were identified as abundant bacterial communities, which included several groups of syntrophic bacteria communities, such as Candidatus Cloacimonas, Cloacimonadaceae W5, Smithella, which are (potential) syntrophic-propionate-oxidizing bacteria and Mesotoga and Thermovigra, which are (potential) syntrophic-acetate-oxidizing bacteria. Lentimicrobium, the most abundant genus in the anaerobic digester, may contribute to the decomposition of carbohydrates and the production of volatile fatty acids during the anaerobic digestion of sewage sludge. Of the methanogens identified, Methanollinea, Candidatus Methanofastidiosum, Methanospirillum, and Methanoculleus were the dominant hydrogenotrophic methanogens, and Methanosaeta was the dominant aceticlastic methanogens. The findings may be used as a reference for developing microbial indicators to evaluate the process stability and process efficiency of the anaerobic digestion of sewage sludge.

Effects of Packing Materials and Inorganic Chemicals During the Start Up in Anaerobic Filter Process (혐기성 생물막법의 Start Up에 있어서의 충진제 및 무기염류의 영향)

  • 정경훈;최형일;신대윤
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.2
    • /
    • pp.73-79
    • /
    • 1994
  • The effects of packing materials in the anaerobic reactor and inorganic chemicals in the synthetic wastewater on the anaerobic treatment during the start up period were investigated using anaeroic filter process. The Ringlace and Honeycomb tube as packing materials were used in the anaerobic reactors. The Ca$^{2+}$ and Fe$^{2+}$ ion concentration as inorganic chemicals contained higher 40 times and 100 times as compared to the control synthetic wastewater, respectively. A start up period 104 and 150 days were necessary to achieve loading rate of 0.37 and 0.74 kg-Toc/m$^3$.d in the anaerobic filter process packed by Ringlace and Honeycomb tube, respectively. The loading rates of the reactor using the synthetic wastewater containing Ca$^{2+}$ (40 times) could be increased faster than in the reactors using the synthetic wastewater containing Fe$^{2+}$ ion (100 times) and control synthetic wastewater. The results of XMA analysis that a lot of the Ca$^{2+}$ ion on the surface of the anaerobic sludge in the anaerobic reactor packed by Ringlace which were fed supplied with synthetic wastewater containing Ca$^{2+}$ ion (40 times) observed as compared to the reactors supplied with control synthetic wastewater and containing Fe$^{2+}$ ion (100 times).

  • PDF

Characteristics of Anaerobic Methane Production by Ultrasonic Treatment of Excess Sludge (잉여슬러지의 초음파 처리에 의한 혐기성 소화에서의 메탄생성 특성 연구)

  • Lee, Jonghak;Jeong, Tae-Young;Roh, Hyun-Seog;Kim, Dongjin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.810-815
    • /
    • 2010
  • Ultrasonic sludge pre-treatment has been studied to enhance the performance of anaerobic digestion by increasing sludge hydrolysis which is regarded as the rate-limiting-step of anaerobic digestion. In this study, the effect of ultrasonic pre-treatment on sludge hydrolysis (solubilization) and methane production was investigated. Sludge solubilization efficiency increased with ultrasonic energy input. However, it is uneconomical to apply more than 720 kJ/L as the solubilization efficiency per energy input declines afterwards. Volatile fatty acids concentration increased after the ultrasonic sludge hydrolysis. Anaerobic batch digestion showed that methane volume reached 64.7 and 84.5 mL after 18 days of incubation with the control sludge and ultrasonically hydrolyzed sludge, respectively. Methane production potential, maximum methane production rate, and the lag time of modified Gompertz equation were changed from 70 mL, 6.4 mL/day, and 1.2 days to 89 mL, 9.6 mL/day, and 0.5 day, respectively, after the ultrasonic sludge treatment. The results proved that ultrasonic pre-treatment contributed significantly not only for the methane production but also for the reduction of anaerobic digestion time which is critical for the performance of anaerobic sludge digestion.

Anaerobic Hydrogen Fermentation and Membrane Bioreactor (MBR) for Decentralized Sanitation and Reuse-Organic Removal and Resource Recovery

  • Paudel, Sachin;Seong, Chung Yeol;Park, Da Rang;Seo, Gyu Tae
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.387-393
    • /
    • 2014
  • The purpose of this study is to evaluate integrated anaerobic hydrogen fermentation and membrane bioreactor (MBR) for on-site domestic wastewater treatment and resource recovery. A synthetic wastewater (COD 17,000 mg/L) was used as artificial brown water which will be discharged from urine diversion toilet and fed into a continuous stirred tank reactor (CSTR) type anaerobic reactor with inclined plate. The effluent of anaerobic reactor mixed with real household grey water (COD 700 mg/L) was further treated by MBR for reuse. An optimum condition maintained in anaerobic reactor was HRT of 8 hrs, pH 5.5, SRT of 5 days and temperature of $37^{\circ}C$. COD removal of 98% was achieved from the overall system. Total gas production rate and hydrogen content was 4.6 L/day and 52.4% respectively. COD mass balance described the COD distribution in the system via reactor byproducts and effluent COD concentration. The results of this study asserts that, anaerobic hydrogen fermentation combined with MBR is a potent system in stabilizing waste strength and clean hydrogen recovery which could be implemented for onsite domestic wastewater treatment and reuse.

TREATMENT OF FOODWASTE AND POSPHORUS REMOVAL USING STRUVITE CRYSTALLIZATION IN HYBRID ANAEROBIC REACTOR WITH SAC MEDIA

  • Park, In-Chul;Kim, Dong-Su;Kim, Sung-Man;Lee, Jung-Jun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.129-132
    • /
    • 2001
  • The purpose of this research was to understand possibility of foodwaste treatment by hybrid anaerobic reactor(HAR). The Possibility of methane utility and applicability of hybrid reactor system using foodwaste as substrate was investigated. The maximum loading rate and optimized operational conditions were determined. Hybrid anaerobic reactor was filled with packing material 50% of its total volume between the tube and the outer surface. The packing material used was randomly packed open-pore synthesis activated ceramic(SAC) media as support media for microbial attachment, growth, and chemical stability protected bacteria from effect of organic acid accumulation. In this research, although foodwaste has high concentrations C $l^{[-10]}$ and S $O_{4}$$^{2-}$ concentration the possibility of foodwaste anaerobic treatment was when foodwaste is treated by anaerobic digestion, this study focused on the possibility using C $H_4$ gas made under the anaerobic treatment as an alternative energy source. Other objective of this research is to study struvite formation and crystal forms in anaerobic digester. HAR is used to investigate phosphate crystallization without the addition of chemicals.

  • PDF

Isolation of Anaerobic Bacteria from Oral Pyogenic Infections (구강 화농성 감염에서 혐기성 세균의 배양분리)

  • 장복실;이장희;최화석;최선진
    • Korean Journal of Microbiology
    • /
    • v.23 no.1
    • /
    • pp.43-48
    • /
    • 1985
  • Strict anaerobic procedures and anaerobic chamber were employed in order to improve the isolation of obligate anaerobes from oral pyogenic infections. Also different culture media were utilized to maximize bacterial recovery. Two blood media: nalidixic acid Tween blood agar (NATB) and plain blood agar (BA), two non-blood media: nalidixic acid Tween agar (NAT) and Gifu anaerobic medium (GAM) were used and compared for their isolation efficacy. Specimens from seven patients were collected with syringe. After collection, the needle was sealed with sterilixed silicone rubber and brought to labortory. The time spent from specimen collection to its processing in anaerobic chamber usually was 15 min. Identification of isolated bacterial strains was done with the API-20A system. Increase in isolation of anaerobic vacteria was achieved. Obligate anaerobic bacteria isolated were 3.3 strains per specimen. This figure falls within the range of 1.9-4.4 strains per specimen reported in other countries. With respect to the media utilized, blood media were superior to non-blood media. NATB medium was effective especially for the isolation of Gram-positive cocci. A total of 15 species of Gram-negative rods was isolated and 12 of them belonged to Bacteroides.

  • PDF

Production of Citrate by Anaerobic Fungi in the Presence of Co-culture Methanogens as Revealed by 1H NMR Spectrometry

  • Cheng, Yan Fen;Jin, Wei;Mao, Sheng Yong;Zhu, Wei-Yun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1416-1423
    • /
    • 2013
  • The metabolomic profile of the anaerobic fungus Piromyces sp. F1, isolated from the rumen of goats, and how this is affected by the presence of naturally associated methanogens, was analyzed by nuclear magnetic resonance spectroscopy. The major metabolites in the fungal monoculture were formate, lactate, ethanol, acetate, succinate, sugars/amino acids and ${\alpha}$-ketoglutarate, whereas the co-cultures of anaerobic fungi and associated methanogens produced citrate. This is the first report of citrate as a major metabolite of anaerobic fungi. Univariate analysis showed that the mean values of formate, lactate, ethanol, citrate, succinate and acetate in co-cultures were significantly higher than those in the fungal monoculture, while the mean values of glucose and ${\alpha}$-ketoglutarate were significantly reduced in co-cultures. Unsupervised principal components analysis revealed separation of metabolite profiles of the fungal mono-culture and co-cultures. In conclusion, the novel finding of citrate as one of the major metabolites of anaerobic fungi associated with methanogens may suggest a new yet to be identified pathway exists in co-culture. Anaerobic fungal metabolism was shifted by associated methanogens, indicating that anaerobic fungi are important providers of substrates for methanogens in the rumen and thus play a key role in ruminal methanogenesis.

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomasses (농축산바이오매스의 고온 혐기성 생분해도 평가)

  • Heo, Nam-Hyo;Kang, Ho;Jeong, Ji-Hyun;Lee, Seung-Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.514-517
    • /
    • 2009
  • Anaerobic biodegradability(AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical Methane Potential(BMP) test has been carried out to evaluate the methane yield of agro-industrial biomasses such as cattle manure, Italian ryegrass(IRG), Oats, Rye and Barley as the forage crops, Rush, the sludges produced from milling and slaughterhouse wastewater treatment plant(SMWTP, SSWTP). In the condition of thermophilic anaerobic digestion, the ultimate methane yield and anaerobic biodegradability of forage crops ranged from 0.367 to $0.452LCH_4$/gVS of methane yield with AB having the range of about 77.0 to 87.3%. On the other hand, that of other substrate showed low figures compared with the forage crops because of low VS content and C/N ratio. Therefore, the forage crops could be used as a good substrate to produce much more the methane in anaerobic digestion.

  • PDF

Treatment of Tapioca Starch Wastewater By Anaerobic Digestion Coupled With Membrane Separation Process (혐기성 소화 및 막분리에 의한 Tapioca 전분의 폐수처리)

  • ;S. Vigneswaran
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.135-141
    • /
    • 1991
  • This study thus looks into two treatment processess : i) Anaerobic digester coupled with hollow fibre membrane unit. Treatment of starch waste with anaerobic digester-membrane system was studied. $0.17\m^2$ area of hollow fibre membrane unit of known pore size was immersed into laboratory-scale anaerobic digestion system. The pore size of membrane was varied from 0.03 to $\0.15mu$m. The hydraulic retention time of anaerobic digester was varied from 1.5 to 10 days. The effect of hydraulic retention time on treatment efficiency was significant while effect of membrane size was not significant. The gas production was about 0.74㎥/kg COD treated. The COD removal efficient was about 80-95% depending on the hydraulic retention time. ii ) Crossflow ultrafiltration as post treatment to anaerobic filter. The effluent from anaerobic filter, which had a total COD in the range of 4,500-5,200 mg/L was treated by crossflow ultrafiltration units. The study conducted with different membrane pore size indicated that membrace with 1,000,000 molecular weight cut-off size gave a higher COD removal efficiency in the range of 83-87% while giving a study flux of $120-130 L/\m^2$.h. A study was conducted to see the long term clogging effect of membrane also.

  • PDF