• Title/Summary/Keyword: anaerobic/aerobic treatment

Search Result 182, Processing Time 0.025 seconds

Evaluation of Environmental Impact with Application of the Life Cycle Assessment Method to Swine Waste Treatment Systems (가축분뇨 처리 시스템에 대한 전과정평가 방법을 적용한 환경영향 평가)

  • Shin, Joungdu;Lee, Sun-Ill;Park, Wu-Kyun;Hong, Seung-Gil;Choi, Yong-Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.64-73
    • /
    • 2013
  • The application of the Life Cycle Assessment (LCA) methodology to analyze the environmental impact to different swine waste treatment systems was investigated. The first part of LCA is to organize an inventory of parameters and emissions released due to the system under investigation. In the following step of the Life Cycle Impact Assessment, the inventory data were analyzed and aggregated in order to finally get one index representing the total environmental burden. For the Life Cycle Impact Assessment (LCIA) the Eco-indicator 95 method has been chosen because this is well documented and regularly applied impact method. Two different swine waste treatment systems such as aerobic and anaerobic digestion systems were chosen as an example for the life cycle impact analysis. For establishing the parameters to be assessed the agricultural environmental effects to above swine waste treatment systems, it has been observed that there was high at T-P emission in anaerobic digestion system and $CO_2$ emission in aerobic digestion system. For Eco-indicator values per environmental effect for swine waste treatment systems related to one tonne of swine waste, it was shown that there was a negative index for global warm potential and soil acidification in aerobic digestion system, but relatively high positive index for eutrophication in anaerobic digestion system.

Recent trends in anaerobic membrane bioreactor treatment of domestic wastewater (혐기성 막 생물반응조를 이용한 하수처리의 최근 동향)

  • Shin, Chung-Heon;Bae, Jae-Ho;Kim, Jeong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.529-545
    • /
    • 2013
  • With the increasing concern on climate changes and energy shortage, anaerobic membrane bioreactors (AnMBR) become a promising alternative to aerobic processes for domestic wastewater treatment. Two major advantages of AnMBRs are energy production and sludge reduction. Recently, several different configurations of AnMBRs have been proved to produce high quality effluent at reasonable hydraulic retention time and ambient temperature. One of the major problems of the AnMBR is membrane fouling control, and some solutions are already suggested. Other problems to be solved before the full application of the AnMBR are recovery of dissolved methane, management of residual nutrients and sulfide. Considering the potential advantages and future technology development, AnMBR will become major domestic wastewater treatment process in near future.

Effect of Aeration on Denitrification by Ochrobactrum authropi SY509

  • Song, Seung-Hoon;Yeom, Sung-Ho;Park, Suk-Soon;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.352-356
    • /
    • 2002
  • Aeration was found to affect the biological denitrification by Ochrobactrum authropi SY509. Although cell growth was vigorous under 1 vvm of aeration and an agitation speed of 400 rpm in a 3-L jar fermentor, almost no nitrate was removed. Yet under low agitation speeds (100, 200, and 300 rpm), denitrification occurred when the dissolved oxygen was exhausted shortly af-ter the inoculation of the microorganism. Ochrobactrum authropi SY509 was found to express highly active denitrifying enzymes under anaerobic conditions. The microorganism also synthesized denitrifying enzymes under aerobic conditions (1 vvm and 400 rpm), yet their activity was only 60% of the maximum level under anaerobic conditions and the nitrate removal efficiency was merely 15%. However, although the activities of the denitrifying enzymes were inhibited in the presence of oxygen, they were fully recovered when the conditions were switched to anaerobic conditions.

Sewage Treatment Using a Modified DNR Process (수정 DNR 공정을 이용한 하수처리)

  • Choi, Jin-Taek;Nam, Se-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.446-451
    • /
    • 2008
  • In this study, the removal characteristics of organic components and nutrients of sewage taken from the Suwon area were investigated in a lab-scale modified DNR (Daewoo Nutrient Removal) process. The modified DNR process consisted of a sludge denitrification tank, an anaerobic tank, an anoxic tank, an aerobic tank, a secondary anoxic tank and a secondary aerobic tank. The proposed process with the average C/N ratio of 3.5 was performed for the sewage treatment. The results were compared with other existing DNR processes. The organic fractions in sewage were analyzed by measuring the oxygen uptake rate. The resulting removal efficiencies of SS, BOD, COD, TN and TP were 93.1%, 95.5%, 86.1%, 67.8% and 80.6%, respectively.

Changes in the Ammonia-Oxidizing Bacteria Community in Response to Operational Parameters During the Treatment of Anaerobic Sludge Digester Supernatant

  • Cydzik-Kwiatkowska, Agnieszka;Zielinska, Magdalena;Bernat, Katarzyna;Kulikowska, Dorota;Wojnowska-Baryla, Irena
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.1005-1014
    • /
    • 2012
  • The understanding of the relationship between ammonia-oxidizing bacteria (AOB) communities in activated sludge and the operational treatment parameters supports the control of the treatment of ammonia-rich wastewater. The modifications of treatment parameters by alteration of the number and length of aerobic and anaerobic stages in the sequencing batch reactor (SBR) working cycle may influence the efficiency of ammonium oxidation and induce changes in the AOB community. Therefore, in the research, the impact of an SBR cycle mode with alternating aeration/mixing conditions (7 h/1 h vs. 4 h/5.5 h) and volumetric exchange rate (n) on AOB abundance and diversity in activated sludge during the treatment of anaerobic sludge digester supernatant at limited oxygen concentration in the aeration stage (0.7 mg $O_2/l$) was assessed. AOB diversity expressed by the Shannon-Wiener index (H') was determined by the cycle mode. At aeration/mixing stage lengths of 7 h/1 h, H' averaged $2.48{\pm}0.17$, while at 4 h/5.5 h it was $2.35{\pm}0.16$. At the given mode, AOB diversity decreased with increasing n. The cycle mode did not affect AOB abundance; however, a higher AOB abundance in activated sludge was promoted by decreasing the volumetric exchange rate. The sequences clustering with Nitrosospira sp. NpAV revealed the uniqueness of the AOB community and the simultaneously lower ability of adaptation of Nitrosospira sp. to the operational parameters applied in comparison with Nitrosomonas sp.

Performances of Ceramic-tube and Pall-ring Upflow Anaerobic Filters Treating a Dairy Waste (세라믹튜브 및 패킹형플라스틱 여재충전 상향류식 혐기성여상에 의한 유가공 폐수처리)

  • Hur, Joon-Moo;Chang, Duk;Pae, Hyung-Suk;Kim, Soo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • Laboratory experiments were conducted to investigate the performances of anaerobic filters packed with ceramic tube and pall-ring media treating a dairy waste. The media packing volume was 65% of effective volume of anaerobic filter. Organics removals of anaerobic filters were maintained above 80% even at an organics loading rate of $10kgCOD/m^3/d$, and this was comparable to aerobic treatment of organic wastes. Organics removals of the ceramic tube anaerobic filters were always lower than those of the pall-ring anaerobic filters due to intrinsic physical property of ceramic tube, especially lower void space which caused to clogging and entrapment of biogas, substrate transfer limitation, and irregular evolution of biogas leading to loss of solids and biomass. This was clearly observed in higher concentration of TSS in the effluent from the ceramic tube anaerobic filter despite of higher retention capacity of TSS compared with pall-ring media. Vertical distribution of organics and solids in the filters showed above 90% of organics and solids in influent were removed below 20% of reactor height, and 50% of remaining organics and solids were removed though media packing zone. Effluent quality from the anaerobic filter was heavily depended on media itself as well as suspended biomass formed below media. It is therefore concluded that the type of media played an important role in biomass accumulation arid gas-liquid-solid separation efficiency. Type of media did not affect the start-up behaviors of the anaerobic filter, and supernatant from anaerobic digested sludge showed a good performance as a seeding materials.

  • PDF

Granulation and Characteristics of Sludges in the Combined SHARON/ANAMMOX Processes (SHARON/ANAMMOX 결합공정에서 슬러지의 입상화와 특성)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.300-307
    • /
    • 2006
  • The combined SHARON (Single reactor system for High ammonium Removal Over Nitrite)-ANAMMOX (Anaerobic ammonium oxidation) reactor were operated in mesophilic condition ($35^{\circ}C$). In this study, microbial granulation and characteristics of SHARON and ANAMMOX sludges were investigated using settling test, Scanning Electron Microscopy (SEM) and Fluorescence In Situ Hybridization (FISH). In SHARON reactor, Aerobic granulation with diameter of 1.5~2.5 mm was accomplished but aerobic granulation was weaker than anaerobic granular sludge. Initial seed sludge of ANAMMOX reactor was used as attached media for biofilm growth. ANAMMOX sludge was more compact and rounder rather than seed sludge. Though ANAMMOX sludge has high activity, it has lower settling ability than the seed granule. The color of ANAMMOX sludge was changed from dark to redish brown granular with diameter of 1~2 mm. In FISH of ANAMMOX sludge, high fraction of Candidatus B. stuttgartiensis which paid great role of nitrogen conversion was detected. Also, FISH results reveals that ANAMMOX bacteria inhabit at inner parts near surface, having advantages in utilization of substrates and protection from oxygen inhibition.

Treatment of Seafood Wastewater Using AO$_2$ System with PU-AC Media (담체가 첨가된 AO$_2$공법을 이용한 수산물 가공폐수의 처리)

  • Lee, Soon;Park, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.666-672
    • /
    • 2008
  • Feasibility of simultaneous removal of organic matter, nitrogen and phosphorus was evaluated by applying AO$_2$ system to treat wastewater from a seafood processing plant. Treatability test was conducted by incorporating activated sludge from municipal sewage treatment plant with PU-AC media. Inflow concentrations of COD, TN, and TP were 198$\sim$1,240 mg/L, 75$\sim$577.4 mg/L, and 2.2$\sim$53.5 mg/L, respectively. Average removal efficiencies and outflow concentration of COD, TN, and TP were 86.5%, 65.7 mg/L; 81.4%, 53.1 mg/L; and 80.6% 4.07 mg/L, respectively. Stable operation was possible by increasing organic matter, nitrogen, and phosphorus loading rate to seafood wastewater treatment system composed of anaerobic and aerobic reactors. Used PU-AC media was proved to be biodegradable in this AO$_2$ system by maintaining high biomass concentration in the PU-AC media.

A Basic Study on the Anaerobic Wastewater Treatment using Nonwoven Fabric Filter Bioreactor (부직포 여과막 생물반응조의 혐기성 폐수처리에 관한 기초연구)

  • Kim, Taek-Su;Bae, Min-Su;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.464-469
    • /
    • 2005
  • In the nonwoven fabric filter bioreactor (NFBR), both the construction and the operation costs could be saved because a high concentration of microorganism can be maintained in the reactor as in the membrane bioreactor. However, the NFBR process has been investigated only under aerobic and/or anoxic conditions, In this research, a basic anaerobic treatment experiment was performed at $35^{\circ}C$ by feeding an airtight NFBR with a concentrated synthetic organic wastewater. The organic loading rate (OLR) of the NFBR was increased stepwise from $0.25kg\;COD/m^3-day$ to $0.77kg\;COD/m^3-day$ by gradually decreasing the hydraulic retention time from 20 days to 13 days. The results of the research showed that the best COD removal efficiency achieved at the OLR of $0.67kg\;COD/m^3-day$ with a value of 99.3%. The methane content of the produced gas was highest with a value of 61.2% at the OLR of $0.33g\;COD/m^3-day$. The highest methane production rate was $0.89g\;COD/m^3-day$ at the same OLR. The operation was terminated at the OLR of $0.77kg\;COD/m^3-day$ because of the deterioration in COD removal efficiency, gas production rate, and the methane content of the gas. Further researches are recommended for the NFBR to be employed for anaerobic treatment of organic wastewaters.

A Study on Characteristics of Aerobic Liquid-Composting using a Micro Air Diffusion and a Mixer System (미세기포와 교반을 이용한 호기성 액비특성에 관한 연구)

  • Gu, Bon-Woo;Oh, Dae-Min;Lee, Young-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1354-1360
    • /
    • 2010
  • The purpose of this study is to analyze the behavior of swine slurry wastewater from bogen, in the treatment of Aerobic Liquid-Composting treatment by Aerobic Liquid-Composting using a mixer and Micro Air Diffusion pH level was at the beginning and its rise was seemingly related to VFA. It appears that removal of BOD and COD are more effective by Aerobic than by Anaerobic. In terms of removal efficiency, it shows 70.9% of BOD and 39% of COD in M.A+Mix and 67.8% of BOD and 19% of COD in M.A. $NH_3-N$ decreases in all conditions, which is caused by both the characteristic of nitrogen and the rise of pH. $NO_3-N$ increases in all conditions. It is judged that the accumulation of $NO_3-N$ affects the reduction of the ratio of denitrification. In the result of the analysis of Manure in swine slurry of liquified fertilizer ingredients, content of Manure in swine slurry of liquified fertilizer ingredients in aerobic conditions (M.A+Mix) is higher than anaerobic conditions.