Browse > Article
http://dx.doi.org/10.4014/jmb.1111.11011

Changes in the Ammonia-Oxidizing Bacteria Community in Response to Operational Parameters During the Treatment of Anaerobic Sludge Digester Supernatant  

Cydzik-Kwiatkowska, Agnieszka (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
Zielinska, Magdalena (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
Bernat, Katarzyna (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
Kulikowska, Dorota (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
Wojnowska-Baryla, Irena (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.7, 2012 , pp. 1005-1014 More about this Journal
Abstract
The understanding of the relationship between ammonia-oxidizing bacteria (AOB) communities in activated sludge and the operational treatment parameters supports the control of the treatment of ammonia-rich wastewater. The modifications of treatment parameters by alteration of the number and length of aerobic and anaerobic stages in the sequencing batch reactor (SBR) working cycle may influence the efficiency of ammonium oxidation and induce changes in the AOB community. Therefore, in the research, the impact of an SBR cycle mode with alternating aeration/mixing conditions (7 h/1 h vs. 4 h/5.5 h) and volumetric exchange rate (n) on AOB abundance and diversity in activated sludge during the treatment of anaerobic sludge digester supernatant at limited oxygen concentration in the aeration stage (0.7 mg $O_2/l$) was assessed. AOB diversity expressed by the Shannon-Wiener index (H') was determined by the cycle mode. At aeration/mixing stage lengths of 7 h/1 h, H' averaged $2.48{\pm}0.17$, while at 4 h/5.5 h it was $2.35{\pm}0.16$. At the given mode, AOB diversity decreased with increasing n. The cycle mode did not affect AOB abundance; however, a higher AOB abundance in activated sludge was promoted by decreasing the volumetric exchange rate. The sequences clustering with Nitrosospira sp. NpAV revealed the uniqueness of the AOB community and the simultaneously lower ability of adaptation of Nitrosospira sp. to the operational parameters applied in comparison with Nitrosomonas sp.
Keywords
Anaerobic sludge digester supernatant; activated sludge; ammonia-oxidizing bacteria; operational parameters; molecular methods;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.   DOI   ScienceOn
2 Anthonisen, A. C., R. C. Loehr, T. B. S. Prakasam, and E. G. Srinath. 1976. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 48: 835-852.
3 APHA. 1992. Standard Methods for the Examination of Water and Wastewater, 18th Ed. pp. 2-56-2-57, 4-77-4-80; 4-85-4- 87; 4-96-4-97; 5-6-5-8. APHA, AWWA and WEF, Washington.
4 Bernat, K., D. Kulikowska, M. Zieli ska, A. Cydzik-Kwiatkowska, and I. Wojnowska-Baryla. 2011. Nitrogen removal from wastewater with a low COD/N ratio at a low oxygen concentration. Bioresour. Technol. 102: 4913-4916.   DOI   ScienceOn
5 Chae, K. J., T. Rameshwar, A. Jang, S. H. Kim, and I. S. Kim. 2008. Analysis of the nitrifying bacterial community in biocube sponge media using fluorescent in situ hybridization (FISH) and microelectrodes. J. Environ. Manage. 88: 1426-1435.   DOI   ScienceOn
6 Coelho, M. A. Z., C. Russo, and O. Q. F. Araujo. 2000. Optimization of sequencing batch reactor for biological nitrogen removal. Water Res. 34: 2809-2817.   DOI   ScienceOn
7 Cydzik-Kwiatkowska, A. and I. Wojnowska-Baryla. 2008. The impact of organic carbon load and ammonia load in wastewater on ammonia-oxidizing bacteria community in activated sludge. Pol. J. Microbiol. 54: 241-248.
8 Cydzik-Kwiatkowska, A. and I. Wojnowska-Baryla. 2011. Nitrifying granules cultivation in SBR at a low COD/N ratio in wastewater. Folia Microbiol. 56: 201-208.   DOI   ScienceOn
9 Cydzik-Kwiatkowska, A., M. Zieli ska, and I. Wojnowska-Bary a. 2011. Impact of operational parameters on bacterial community in a full-scale municipal wastewater treatment plant. Pol. J. Microbiol. 61: 41-49.
10 Daims, H., U. Purkhold, L. Bjerrum, E. Arnold, P. A. Wilderer, and M. Wagner. 2001. Nitrification in sequencing biofilm batch reactor: Lessons from molecular approaches. Water Sci. Technol. 43: 9-18.
11 Dytczak, M. A., K. L. Londry, and J. A. Oleszkiewicz. 2008. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Res. 42: 2320-2328.   DOI   ScienceOn
12 Fernandez, A. S., S. A. Hashsham, S. L. Dollhopf, L. Raskin, O. Glagoleva, F. B. Dazzo, R. F. Hickey, C. S. Criddle, and J. M. Tiedje. 2000. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl. Environ. Microbiol. 66: 4058-4067.   DOI   ScienceOn
13 Geets, J., N. Boon, and W. Verstraete. 2006. Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol. Ecol. 58: 1-13.   DOI   ScienceOn
14 Hall, S. J., J. Keller, and L. L. Blackall. 2003. Microbial quantification in activated sludge: The hits and misses. Water Sci. Technol. 48: 121-126.
15 Hallin, S., P. Lydmark, S. Kokalj, M. Hermansson, F. Sorensson, A. Jarvis, and P. E. Lindgren. 2005. Community survey of ammoniaoxidizing bacteria in full-scale activated sludge processes with different solids retention time. J. Appl. Microbiol. 99: 629-640.   DOI   ScienceOn
16 Janus, H. M. and H. F. van der Roest. 1997. Don't reject the idea of treating reject water. Water Sci. Technol. 35: 27-34.
17 Juretschko, S., G. Timmermann, M. Schmid, K. H. Schleifer, A. Pommerening-Roser, H. P. Koops, and M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042-3051.
18 Katsogiannis, A. N., M. Kornaros, and G. Lyberatos. 2003. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs. Water Sci. Technol. 47: 53-59.
19 Konuma, S., H. Satoh, T. Mino, and T. Matsuo. 2001. Comparison of enumeration methods for ammonia-oxidizing bacteria. Water Sci. Technol. 43: 107-114.
20 Lydmark, P., R. Almstrand, K. Samuelsson, A. Mattsson, F. Sorensson, P. E. Lindgren, and M. Hermansson. 2007. Effects of environmental conditions on the nitrifying population dynamics in a pilot wastewater treatment plant. Environ. Microbiol. 9: 2220-2233.   DOI   ScienceOn
21 Marzorati, M., L. Wittebolle, N. Boon, D. Daffonchio, and W. Verstraete. 2008. How to get more out of molecular fingerprints: Practical tools for microbial ecology. Environ. Microbiol. 10: 1571-1581.   DOI   ScienceOn
22 Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann, and D. A. Stahl. 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156-2162.
23 Mota, C., M. A. Head, J. A. Ridenoure, J. J. Cheng, and F. L. de los Reyes III. 2005. Effects of aeration cycles on nitrifying bacteria populations and nitrogen removal in intermittently aerated reactors. Appl. Environ. Microbiol. 71: 8565-8572.   DOI   ScienceOn
24 Nei, M. and W. H. Li. 1979. Mathematical model for studying genetic variation on terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 76: 5269-5273.   DOI   ScienceOn
25 Nicolaisen, M. H. and N. B. Ramsing. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Meth. 50: 189-203.   DOI   ScienceOn
26 Nogueira, R., L. F. Melo, U. Purkhold, S. Wuertz, and M. Wagner. 2002. Nitrifying and heterotrophic population dynamics in biofilm reactors: Effects of hydraulic retention time and the presence of organic carbon. Water Res. 36: 469-481.   DOI   ScienceOn
27 Norton, J. M., J. J. Alzerreca, J. Suwa, and M. G. Klotz. 2002. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch. Microbiol. 177: 139-149.   DOI   ScienceOn
28 Oguz, M. T., K. G. Robinson, A. C. Layton, and G. S. Slayer. 2006. Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge. Water Res. 40: 665-674.   DOI   ScienceOn
29 Rittmann, B. E., C. S. Laspidou, J. Flax, D. A. Stahl, V. Urbain, H. Harduin, et al. 1999. Molecular and modeling analyses of the structure and function of nitrifying activated sludge. Water Sci. Technol. 39: 51-59.   DOI   ScienceOn
30 Rotthauwe, J. H., K. P. Witzel, and W. Liesack. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712.
31 Rowan, A. K., J. R. Snape, D. Fearnside, M. R. Barer, T. P. Curtis, and I. M. Head. 2003. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol. 43: 195-206.   DOI   ScienceOn
32 Saikaly, P. E., P. G. Stroot, and D. B. Oerther. 2005. Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge. Appl. Environ. Microbiol. 71: 5814-5822.   DOI   ScienceOn
33 Schramm, A., D. de Beer, J. C. Heuvel, S. Ottengraf, and R. Amman. 1999. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: Quantification by in situ hybridization and the use of microelectrode. Appl. Environ. Microbiol. 65: 3690-3696.
34 Shannon, C. E. and W. Weaver. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana.
35 Stanisz, A. 2000. Podstawy statystyki dla prowadz cych badania naukowe. Odcinek 21: Analiza korelacji. Med. Praktyczna. 10: 176-181. [In Polish]
36 Tamura, K. and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526.
37 Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.   DOI   ScienceOn
38 Wiener, N. 1948. Cybernetics: Or Control and Communication in the Animal Machine. John Willey and Sons, New York.
39 Wittebolle, L., H. Vervaern, W. Verstraete, and N. Boon. 2008. Quantifying community dynamics of nitrifiers in functionally stable reactors. Appl. Environ. Microbiol. 74: 286-293.   DOI   ScienceOn
40 Wittebolle, L., W. Verstraete, and N. Boon. 2009. The inoculum effect on the ammonia-oxidizing bacterial communities in parallel sequential batch reactors. Water Res. 43: 4149-4158.   DOI   ScienceOn
41 Zhu, S. and S. Chen. 2001. Effects of organic carbon on nitrification rate in fixed film biofilters. Aquacult. Eng. 25: 1-11.   DOI   ScienceOn
42 Zieli ski, M. and M. Zieli ska. 2010. Impact of microwave radiation on nitrogen removal and quantity of nitrifiers in biofilm. Can. J. Civil Eng. 37: 661-666.   DOI   ScienceOn