• Title/Summary/Keyword: anaerobic/aerobic treatment

Search Result 182, Processing Time 0.027 seconds

Removal of Nutrients Using an Upflow Septic Tank(UST) - Aerobic Filter(AF) System (부패조와 호기성 여과공정을 이용한 영양염류 제거)

  • Park, Sang-Min;Jun, Hang-Bae; Bae, Jong-Hun;Park, Woo-Kyun;Park, Noh-Back
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.232-238
    • /
    • 2010
  • The objective of this study was to investigate a small sewage treatment system. This system was developed to improve a nitrogen and phosphorus removal efficiency and generate less solid using upflow septic tank(UST) - aerobic filter(AF) system. The UST equipped with an aerobic filter, the filter was fed with both raw sewage and recycled effluent from the UST to induce the denitrification and solid reduction simultaneously. Overall removal efficiencies of COD and total nitrogen(TN) were above 96% and 73% at recycle ratio of 200%, respectively. Critical coagulant dose without the biochemical activity was found to be 40 mg/L. Removal efficiency of total phosphorus(TP) in influent was above 90% by chemical and biological reactions. Although the phosphorus concentration was low under the high alkalinity in raw sewage, the pH value was unchanged by the coagulant dose.

Performance Evaluation of Bio-Membrane Hybrid Process for Treatment of Food Waste Leachate (음식물 침출수 청정화를 위한 파일롯 규모의 생물-분리막 복합공정의 성능 평가 연구)

  • Lee, Myung-Gu;Park, Chul-Hwan;Lee, Do-Hoon;Kim, Tak-Hyun;Lee, Byung-Hwan;Lee, Jin-Won;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.90-95
    • /
    • 2008
  • In this study, a combined process of sequential anaerobic-aerobic digestion (SAAD), fluidized-bed bioreactor (FBBR), and ultrafiltration (UF) for the treatment of small scale food waste leachate was developed and evaluated. The SAAD process was tested for performance and stability by subjecting leachate from food waste to a two-phase anaerobic digestion. The main process used FBBR composed of aerators for oxygen supply and fluidization, three 5 ton reaction chambers containing an aerobic mesophilic microorganism immobilized in PE (polyethylene), and a sedimentation chamber. The HRTs (hydraulic retention time) of the combined SAAD-FBBR-UF process were 30, 7, and 1 day, and the operation temperature was set to the optimal one for microbial growth. The pilot process maintained its performance even when the CODcr of input leachate fluctuated largely. During the operation, average CODcr, TKN, TP, and salt of the effluent were 1,207mg/L, 100mg/L, 50 mg/L, and 0.01 %, which corresponded to the removal efficiencies of 99.4%, 98.6%, 89.6%, and 98.5%, respectively. These results show that the developed process is able to manage high concentration leachate from food waste and remove CODcr, TKN, TP, and salt effectively.

LABORATORY STUDIES ON MIC OF AISI TYPE 304 STAINLESS STEEL USING BACTERIA ISOLATED FROM A W ASTEWATER TREATMENT SYSTEM

  • Sreekumari, Kurissery R.;Kyozo, Hirotani;Katsuya, Akamatsu;Takashi, Imamichi;Yasushi, Kikuchi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.260-265
    • /
    • 2002
  • Microbiologically influenced Corrosion (MIC) is one of the most deleterious effects of metal microbe interactions. When a fresh metal surface comes in contact with a non-sterile fluid, biofilm formation is ensued. This might result in the initiation of corrosion. The sites and materials where MIC is implicated are versatile. Industries such as shipping, power generation, chemical etc are reported to be affected. The rapid and unexpected failure of AISI type 304 stainless steel was investigated in the laboratory by simulation studies for a period of 4 months. Slime and water samples from the failure site were screened for corrosion causing bacteria. Both aerobic and anaerobic nora were enumerated and identified using PCR techniques. Pseudomonas sp. and Bacillus sp. were the most common aerobic bacteria isolated from the water and slime samples, whilst sulfate reducing bacteria (SRB) were the major anaerobic bacteria. The aerobic bacteria were used for the corrosion experiments in the laboratory. Coupon exposure studies were conducted using a very dilute (0.1%V/V) nutrient broth medium. The coupons after retrieval were observed under a Scanning Electron Microscope (SEM) for the presence of MIC pits. Compared to sterile controls, metal coupons exposed to Pseudomonas sp and Bacillus sp. showed the initiation of severe pitting corrosion. However, amongst these two strains, Psudomonas sp. caused pits in a very short span of 14 days. Towards the end of the experiment, severe pitting was observed in both the cases. The detailed observation of pits showed they vary both in number and shapes. Whilst the coupons exposed to Bacillus sp. showed widely spread scales like pits, those exposed to Pseudomonas sp. showed smaller and circular pits, which had grown in number and size by the end of the experiment. From these results it is inferred that the rapid and unexpected failure of 304 SS might be due to MIC. Pseudonwnas sp. could be considered as the major responsible bacteria that could initiate pits in the metallic structures. As the appearance of pits was different in both the tested strains, it was thought that the mechanisms of pit formation are different. Experiments on these lines are being continued.

  • PDF

Estimation of Sludge Gas Composition and Heating Value from Anaerobically Digested Korean Food Wastes (우리나라 음식물 쓰레기의 혐기성소화 가스 성분과 발열량 예측)

  • Chang, Ho Nam;Hong, Won Hi;Lee, Tai-yong;Chang, Seung Teak;Chung, Chang Moon;Park, Young-Sook
    • Clean Technology
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • The generation of food waste in Korea amounts to 4.10 million per year, which corresponds to 820,000 dry ton of organic waste. This has been used traditionally as animal feed or soil conditioner, but its efficacy has remained doubtful in recent years. In this study as an alternative we considered methane production by anaerobic treatment, which has an advantage of 200 million US dollars over aerobic methods. The production of methane amounts to $4.40{\times}10^8m^3$, 3.43% of $1.28{\times}10^8m^3$, total natural gas used in Korea. Furthermore the methane from household kitchen food waste amounts to 28.9% of the total gas used in the kitchen.

  • PDF

Identification and Antibiotic Susceptibility of the Bacteria from Non-odontogenic Infectious Lesions

  • Kim, Yong Min;Kim, Jae-Jin;Kim, Mija;Park, Soon-Nang;Kim, Hwa-Sook;Kook, Joong-Ki;Kim, Hak Kyun
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.87-95
    • /
    • 2014
  • The purpose of this study was to isolate and identify bacteria from the 4 patients with non-odontogenic infectious lesions (mucormycosis, chronic inflammation from wound infection, and two actinomycosis) and determine their antimicrobial susceptibility against eight antibiotics. Bacterial culture was performed under three culture conditions (anaerobic, $CO_2$, and aerobic incubator). The bacterial strains were identified by 16S rRNA gene (16S rDNA) sequence comparison analysis method. For investigating the antimicrobial susceptibility of the bacteria against eight antibiotics, penicillin G, amoxicillin, tetracycline, cefuroxime, erythromycin, clindamycin, vancomycin, and Augmentin$^{(R)}$ (amoxicillin + clavulanic acid), minimum inhibitory concentration (MIC) measurement was performed using broth microdilution assay. Nosocomial pathogens such as Enterococcus faecalis, Klebsiella pneumoniae, Bacillus subtilis, and Neisseria flavescens were isolated from mucormycosis. Veillonella parvula, Enterobacter hormaechei, and Acinetobacter calcoaceticus were isolated from chronic inflammatory lesion. Actinomyces massiliensis was isolated from actinomycosis in parotid gland. Capnocytophaga ochracea was isolated from actinomycosis in buccal region in anaerobic condition. There was no susceptible antibiotic to all bacteria in mucormycosis. Tetracycline was susceptible to all bacteria in chronic inflammation. C. ochracea was resistant to vancomycin and penicillin G; and other antibiotics showed susceptibility to all bacteria in actinomycosis. The results indicated that the combined treatment of two or more antibiotics is better than single antibiotic treatment in mucormycosis, and penicillin is the first recommended antibiotic to treat actinomycosis.

D(-) and L(+)-Lactic Acid Determination of Lactobacillus acidophilus during Fermentation and Storage Period (Lactobacillus acidophilus NCFM의 배양 및 저장 중 D(-) 및 L(+)-lactic acid의 변화)

  • Lee, Kyung-Wook;Shin, Yong-Kook;Baick, Seung-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.168-174
    • /
    • 1998
  • The amount of D(-)-lactic acid in fermented dairy products is very important because the rate of metabolism of D(-)-lactic acid is lower than that of L(+)-lactic acid. The purpose of this study was to investigate the optimum condition during fermentation and storage of yogurt for the formation of isomers of lactic acid by Lactobacillus acidophilus NCFM. The production of acid was excellent at $37^{\circ}C$ of fermentation and the ratio of D(-)-lactic acid was also lower than that of other conditions such as $35^{\circ}C{\;}and{\;}40^{\circ}C$. Among shaking and non-shaking treatment under aerobic condition and anaerobic condition, non-shaking treatment under aerobic condition was the best condition at the production of acid and L(+)-lactic acid during fermentation. During storage at low temperature, a larger amount of L(+)-lactic acid was produced than at higer storage temperature.

  • PDF

Simultaneous Treatment of Sewage Sludge and Food Wastewater Using Combined Digestion Process (혼합 소화공정을 통한 하수 슬러지와 음폐수 병합 처리)

  • Ha, Jeong Hyub;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.581-586
    • /
    • 2017
  • In this study, in order to find the feasibility of thermophilic biological pre-treatment for the co-digestion of food wastewater and sewage sludge, digestion efficiency of the combined thermophilic aerobic and mesophilic anaerobic process and its effect on methane production were investigated. Also, a lab-scale co-digestion process was operated to observe parameter changes according to the increase of organic loading rates using different dilution ratios of distilled water and food wastewater (1/3 [Run I], 2/3 [Run II] in addition to using the raw food wastewater [Run III]). The results indicated that co-digestion process maintained quite stable and constant pH during entire experiments. With regard to VS removal, the higher removal was observed in the combined process and the removal efficiency was 52.24% (Run I), 66.59% (Run II) and 72.53 (Run III), respectively. In addition, the combined process showed about an 1.6-fold improved methane production rate and significantly higher methane yield than that of using single anaerobic digestion process.

Quality Changes During Storage of Cook-chilled Soybean Sprouts

  • Koo, Kyoung-Mo;Kim, Hyoun-Wook;Lee, Dong-Sun;Lyu, Eun-Soon;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.540-546
    • /
    • 2008
  • Sous vide and packaged cook-chilled soybean sprouts were evaluated for physicochemical quality changes and microbial safety during storage for the purposes of shelf-life extension and industrial application. The physicochemical changes assessed were color, texture, and ascorbic acid concentration. The quality of soybean sprouts became worse with increased periods of storage and better in storage temperature of $3^{\circ}C$ more than in $10^{\circ}C$. The concentration of aerobic bacteria decreased from $2.1{\times}10^8$ to $6.0{\times}10^2\;CFU/g$ after pasteurization, but increased during storage. These bacteria are the same shape as anaerobic and hsychrophilic bacteria, but none of these other organisms were detected after heat treatment. The physicochemical qualities of soybean sprouts and microbial safety were better for products stored at $3^{\circ}C$ than at $10^{\circ}C$. In the case of short storage periods, heat treatment at $70^{\circ}C$ for 2 min was most effective for quality and microbial safety.

Performance Characteristics and Improvement Suggestion of Individual Sewage Treatment in Kyangan Watershed (경안천 유역 소규모 오수처리시설의 처리특성 및 효율개선방안)

  • Jang, Young-ho;Kim, Keug Tae;Jahng, Deok-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.816-821
    • /
    • 2010
  • It has been achieved 109.1 kg/d of BOD reduction that is equivalent to the amount of BOD loading discharged from 21,880 persons and dramatic decrease of the fallout ratio against water quality of effluent, from 42% to 9%, through technical support on ISTPs to be applied by the ISMSGA at the upper area of Geongan river in Yong-In city. It was clearly revealed that the most efficient configuration for ISTP was a series of anaerobic tank, equalization basin, aerobic tank, sedimentation tank, and then effluent tank. Also, the major causes on the fallout ratio of ISTP resulted in the lack of management (67.5%) and imperfect facilities (32.5%). Then, when compared the quantity of water supply with the design capacity of ISTP, the design capacity was estimated as 1.8 or 2.4 folds larger than the real quantity of water supply so that it is essential to punctually consider the key factors such as an estimation methods, the specificity of commission operator and construction by high systematic technologies to improve the water quality for the future.

Influence of Food Wastewater Loading Rate on the Reactor Performance and Stability in the Thermophilic Aerobic Process (음폐수 부하량에 따른 고온호기성 공정의 처리 양상)

  • Jang, Hyun Min;Choi, Suk Soon;Ha, Jeong Hyub;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2013
  • In this study, the feasibility of a single-stage thermophilic aerobic process for the treatment of high-strength food wastewater produced from the recycling process of food wastes was examined to substitute anaerobic digestion process. Also, the removal and stability of thermophilic aerobic process were assessed according to the changes of hydraulic retention times (HRTs) and organic loading rates (OLRs). When the OLR increased from 9.2 to $37.2kgCOD/m^3d$, a pH value in R1 (HRT : 5 d) significantly decreased to 5.0, due to the organic acid accumulation. On the other hand, the pH value in R2 (HRT : 10 d) was stable and R2 showed the high removal of COD, organic acid and lipid, even though the OLR increased from 4.6 to $18.6kgCOD/m^3d$. In R1, the COD loading rates for COD removal was suddenly dropped, as the COD loading rate increased from 18.6 to $28.4kgCOD/m^3d$. In contrast, R2 showed that the COD loading rates for COD removal increased with regard to increment in the loading rates of 3.61, 7.05, 9.43 and $12.2kgCOD/m^3d$, indicative of the high COD removal efficiency. Therefore, the results demonstrated that over 10-d HRT, the high concentration of raw food wastewater was efficiently treated in the single-stage thermophilic aerobic process.