• Title/Summary/Keyword: an algebraic normal form

Search Result 7, Processing Time 0.023 seconds

A METHOD FOR SOLVING OF LINEAR SYSTEM WITH NORMAL COEFFICIENT MATRICES

  • KAMALVAND, M.GHASEMI;FARAZMANDNIA, B.;ALIYARI, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.305-320
    • /
    • 2020
  • This study aims to generalize MINRES-N2 method [1]. It means that we tend to obtain an algorithm to transfer each normal matrix - that its eigenvalues belong to an algebraic curve of low degree k- to its condensed form through using a unitary similarity transformation. Then, we aim to obtain a method to solve a system of linear equations that its coefficient matrix is equal to such a matrix by utilizing it. Finally this method is compared to the well-known GMRES method through using numerical examples. The results obtained through examples show that the given method is more efficient than GMRES.

PROJECTIONS OF ALGEBRAIC VARIETIES WITH ALMOST LINEAR PRESENTATION I

  • Ahn, Jeaman
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.15-21
    • /
    • 2019
  • Let X be a reduced closed subscheme in ${\mathbb{P}}^n$ and $${\pi}_q:X{\rightarrow}Y={\pi}_q(X){\subset}{\mathbb{P}}^{n-1}$$ be an isomorphic projection from the center $q{\in}{\mathbb{P}}^n{\backslash}X$. Suppose that the minimal free presentation of $I_X$ is of the following form $$R(-3)^{{\beta}2,1}{\oplus}R(-4){\rightarrow}R(-2)^{{\beta}1,1}{\rightarrow}I_X{\rightarrow}0$$. In this paper, we prove that $H^1(I_X(k))=H^1(I_Y(k))$ for all $k{\geq}3$. This implies that Y is k-normal if and only if X is k-normal for $k{\geq}3$. Moreover, we also prove that reg(Y) ${\leq}$ max{reg(X), 4} and that $I_Y$ is generated by homogeneous polynomials of degree ${\leq}4$.

Microparticle Impact Motion with Adhesion and Frictional Forces (부착력과 마찰력이 개재된 마이크로 입자 충돌 운동)

  • Han, In-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1698-1708
    • /
    • 2002
  • The main topic covered in this paper is that of the impact process, that is, where two bodies come into contact and rebound or stick together. This paper presents how to determine the rebound velocities of a microparticle that approaches a surface with arbitrary initial velocities and relate the impact process to the physical properties of the materials and to the adhesion force. Actual adhesion forces demonstrate a significant amount of energy dissipation in the form of hysteresis, and act generally in a normal to the contact surfaces. Microparticles must also contend with forces tangent to the contact surfaces, namely Coulomb dry friction. The developed model has an algebraic form based on the principle of impulse and momentum and hypothesis of energy dissipation. Finally, several analyses are carried out in order to estimate impact parameters and the developed analytical model is validated using experimental results.

ALGORITHMS FOR GENERATING NONLINEAR COMBINERS WITH GIVEN CONDITIONS

  • Rhee, Min-Surp;Shin, Hyun-Yong;Jun, Youn-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.269-278
    • /
    • 2000
  • A Boolean function generates a binary sequence which is frequently used in a stream cipher. There are number of critical concepts which a Boolean function, as a key stream generator in a stream cipher, satisfies. These are nonlinearity, correlation immunity, balancedness, SAC(strictly avalanche criterion), PC(propagation criterion) and so on. In this paper, we present the algorithms for generating random nonlinear combining functions satisfying given correlation immune order and nonlinearity. These constructions can be applied for designing the key stream generators. We use Microsoft Visual C++6.0 for our program.

Minimum Density Power Divergence Estimation for Normal-Exponential Distribution (정규-지수분포에 대한 최소밀도함수승간격 추정법)

  • Pak, Ro Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.397-406
    • /
    • 2014
  • The minimum density power divergence estimation has been a popular topic in the field of robust estimation for since Basu et al. (1988). The minimum density power divergence estimator has strong robustness properties with the little loss in asymptotic efficiency relative to the maximum likelihood estimator under model conditions. However, a limitation in applying this estimation method is the algebraic difficulty on an integral involved in an estimation function. This paper considers a minimum density power divergence estimation method with approximated divergence avoiding such difficulty. As an example, we consider the normal-exponential convolution model introduced by Bolstad (2004). The estimated divergence in this case is too complicated; consequently, a Laplace approximation is employed to obtain a manageable form. Simulations and an empirical study show that the minimum density power divergence estimators based on an approximated estimated divergence for the normal-exponential model perform adequately in terms of bias and efficiency.

The Formalization of a Temporal Object Oriented Model Based on an Attribute versioning (속성 버전화에 기반한 시간지원 객체지향 모델의 형식화)

  • 이홍로;김삼남;류근호
    • Proceedings of the Korea Database Society Conference
    • /
    • 1997.10a
    • /
    • pp.483-503
    • /
    • 1997
  • One important question that arises when dealing with temporal databases in context of object-oriented systems is the method that associates time with attributes relationship semantics. Results of previous work about attribute versioning, particularity extending flat(First Normal Form: FNF) or nested(Non-First Normal Form: NFNF) relational models. are not applicable to temporal object-oriented databases. This is because object-oriented models provide more powerful constructs than traditional models for structuring complex objects. Therefore, this paper presents an formal approach for incorporating temporal extension to object-oriented databases. Our goal in this paper is to study temporal object-oriented database representation according to generalization, aggregation and association among objects. We define tile concepts of attribute versioning in temporal object-oriented model, and we concentrate on the representation of temporal relationship among objects. Another contribution of this paper is to specify time constraints on relationship semantics and analyze our model based on representation criteria. By means of formalizing tile temporal object oriented model, this paper can not only provide tile robust operating functions that design algebraic operators, but also entrance the reuse of modules.

  • PDF

Cryptanalysis of LILI-128 with Overdefined Systems of Equations (과포화(Overdefined) 연립방정식을 이용한 LILI-128 스트림 암호에 대한 분석)

  • 문덕재;홍석희;이상진;임종인;은희천
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.1
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper we demonstrate a cryptanalysis of the stream cipher LILI-128. Our approach to analysis on LILI-128 is to solve an overdefined system of multivariate equations. The LILI-128 keystream generato $r^{[8]}$ is a LFSR-based synchronous stream cipher with 128 bit key. This cipher consists of two parts, “CLOCK CONTROL”, pan and “DATA GENERATION”, part. We focus on the “DATA GENERATION”part. This part uses the function $f_d$. that satisfies the third order of correlation immunity, high nonlinearity and balancedness. But, this function does not have highly nonlinear order(i.e. high degree in its algebraic normal form). We use this property of the function $f_d$. We reduced the problem of recovering the secret key of LILI-128 to the problem of solving a largely overdefined system of multivariate equations of degree K=6. In our best version of the XL-based cryptanalysis we have the parameter D=7. Our fastest cryptanalysis of LILI-128 requires $2^{110.7}$ CPU clocks. This complexity can be achieved using only $2^{26.3}$ keystream bits.