• Title/Summary/Keyword: amylopectin structure

Search Result 51, Processing Time 0.017 seconds

Effect of Heat Treatment Conditions on the Characteristics of Gel Made from Arrowroot Starch in Korea Cultivars (국내산 칡 전분 젤 특성에 미치는 가열처리 조건의 영향)

  • Lee, Seog-Won;Kim, Hyo-Won;Han, Sung-Hee;Rhee, Chul
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.3
    • /
    • pp.387-395
    • /
    • 2009
  • This study was conducted to investigate the effects of starch concentrations and heating conditions on the gel characteristics of arrowroot starch. Arrowroot starch gels with various pHs, and starch concentrations, were prepared using different temperatures and heating times, and then stored for 24 hrs at $4^{\circ}C$. The hardness of sample gels made at pH 2.0 and 4.0 increased as the starch concentration increased from 7% to 10%, with the maximum value of 94 N being obtained when the gel was prepared at pH 4.0 with a starch concentration of 10%. The maximum hardness of samples prepared with concentrations of starch ranging from 7~9% appeared at $80^{\circ}C$, regardless of the heating temperature and time. Furthermore, the hardness of samples prepared at greater than $100^{\circ}C$ was relatively lower than that of samples prepared at other temperatures. When a starch concentration of 8% was used, the degree of gelatinization(DR) increased as the heating temperature increased, with the maximum value of DR being about 76% at $120^{\circ}C$, regardless of heating time. After storage for 24 hrs, the hardness of samples prepared at $70^{\circ}C$, $80^{\circ}C$ and $90^{\circ}C$ appeared to decrease, while that of samples prepared at $100^{\circ}C$, $110^{\circ}C$ and $120^{\circ}C$ increased. The correlation between hardness and the degree of gelatinization or retrogradation was very high when samples were prepared at $80^{\circ}C$ with a starch concentration of 9%, as indicated by a correlation coefficient of greater than 0.95. Overall, the microstructures of freeze-dried arrowroot starch gel were composed of a continuous network of amylose and amylopectin with fragmented ghost structures in an excluded phase, but these ghost structures were more evident after storage and with increased heating temperature.