• Title/Summary/Keyword: amyloid-${\beta}$

Search Result 431, Processing Time 0.054 seconds

REGULATION OF BETA-AMYLOID-STIMULATED PROINFLAMMATORY RESPONSES VIA MITOGEN ACTIVATED PROTEIN KINASES AND REDOX SENSITIVE TRANSCRIPTION FACTORS

  • Jang, Jung-Hee;Surh, Young-Joon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.327.2-327.2
    • /
    • 2002
  • Inflammatory as well as oxidative tissue damage has been associated with pathophysiology of Alzheimer's disease (AD), and nonsteroidal anti-inflammatory drugs have been shown to retard the progress of AD. In this study, we have investigated the molecular mechanisms underlying oxidative and inflammatory cell death induced by beta-amyloid (Abeta), a neurotoxic peptide associated with senile plaques formed in the brains of patients with AD, in cultured PC12 cells. (omitted)

  • PDF

Ethanol Extract of Three Plants of Curcuma longae Radix, Phellinus linteus, and Scutellariae Radix Inhibits Amyloid $\beta$ Protein (25-35)-Induced Neurotoxicity in Cultured Neurons and Memory Impairment in Mice (Curcuma longae Radix, Phellinus linteus 및 Scutellariae Radix 혼합추출물의 $A{\beta}$ (25-35) 유도 배양신경세포독성 및 마우스기억손상 억제효과)

  • Kim, Joo-Youn;Jeong, Ha-Yeon;Ban, Ju-Yeon;Yoo, Jae-Kuk;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.388-396
    • /
    • 2009
  • The present study investigated an ethanol extract (HS0608) of a mixture of three medicinal plants of Curcuma longae radix, Phellinus linteus, and Scutellariae radix for possible neuroprotective effects on neurotoxicity induced by amyloid $\beta$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons and antidementia activity in mice. Exposure of cultured cortical neurons to $10\;{\mu}M$ $A{\beta}$ (25-35) for 36 h induced neuronal apoptotic death. At $1-50\;{\mu}g/m{\ell}$, HS0608 inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $A{\beta}$ (25-35) in primary cultures of rat cortical neurons. Memory loss induced by intracerebroventricular injection of ICR mice with 15 nmol $A{\beta}$ (25-35) was inhibited by chronic treatment with HS0608 (25, 50 and 100 mg/kg, p.o. for 7 days) as measured by a passive avoidance test. From these results, we suggest that the antidementia effect of HS0608 is due to its neuroprotective effect against $A{\beta}$ (25-35)-induced neurotoxicity and that HS0608 may have a therapeutic role in preventing the progression of Alzheimer's disease.

Inhibitory Effects of Flavonoids Isolated from Leaves of Petasites japonicus on $\beta$-Secretase (BACE1)

  • Song, Kyung-Sik;Choi, Sun-Ha;Hur, Jong-Moon;Park, Hyo-Jun;Yang, Eun-Ju;MookJung, In-Hee;Yi, Jung-Hyun;Jun, Mi-Ra
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1165-1170
    • /
    • 2008
  • The deposition of the amyloid $\beta}$ ($A{\beta}$)-peptide following proteolytic processing of amyloid precursor protein (APP) by $\beta$-secretase (BACE1) and $\gamma$-secretase is critical feature in the progress of Alzheimer's disease (AD). Consequently, BACE1, a key enzyme in the production of $A{\beta}$, is a prime target for therapeutic intervention in AD. In the course of searching for BACE1 inhibitors from natural sources, the ethyl acetate fraction of Petasites japonicus showed potent inhibitory activity. Two BACE1 inhibitors quercetin (QC) and kaempferol 3-O-(6"-acetyl)-$\beta$-glucopyranoside (KAG) were isolated from P. japonicus by activity-guided purification. QC, in particular, non-competitively attenuated BACE1 activity with $IC_{50}$ value of $2.1{\times}10^{-6}\;M$ and $K_i$ value of $3.7{\times}10^{-6}\;M$. Both compounds exhibited less inhibition of $\alpha$-secreatase (TACE) and other serine proteases including chymotrypsin, trypsin, and elastase, suggesting that they ere relatively specific and selective inhibitors to BACE1. Furthermore, both compounds significantly reduced the extracellular $A{\beta}$ secretion in $APP_{695}$-transfected B103 cells.

Angelica keiskei Improved Beta-amyloid-induced Memory Deficiency of Alzheimer's Disease (아밀로이드 베타로 유발한 알츠하이머병 모델에서 신선초의 기억력 개선 효과)

  • Lee, Jihye;Kim, Hye-Jeong;Kim, Dong-Hyun;Shin, Bum Young;Jung, Ji Wook
    • The Korea Journal of Herbology
    • /
    • v.34 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Objectives : Amyloid ${\beta}(A{\beta})$ could induce cognitive deficits through oxidative stress, inflammation, and neuron death in Alzheimer's disease (AD). This study was investigated the effect of Angelica keiskei KOIDZUMI (AK) on memory in $A{\beta}$-induced an AD model. Methods : AK was extracted uses 70% ethanol solvent. Total polyphenol and flavonoids content were obtained by the Folin-Ciocalteu and the Ethylene glycol colorimetric methods, respectively. The antioxidant activities were assessed through free radical scavenging assays using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) methods. Intracerebroventrical (i.c.v) injection of $A{\beta}$ 1-42 was used to induce AD in male ICR mice, followed by administrations of 5, 10 or 20 mg/kg AK on a daily. Animals were subjected to short and long term memory behavior in Y-maze and passive avoidance test. Results : The total polyphenol and flavonoids contents of the AK extract were $88.73{\pm}6.36mg$ gallic acid equivalent/g, $84.21{\pm}5.04mg$ rutin equivalent/g, respectively. The assays of DPPH and ABTS revealed that AK extract in treated concentrations (31.25, 62.5, 125, 250, 500, $1000{\mu}g/m{\ell}$) increased antioxidant activity in a dose-dependent manner. Oral administration of AK extract significantly reversed the $A{\beta}$ 1-42-induced decreasing of the spontaneous alternation in the Y-maze test and $A{\beta}$ 1-42-induced shorting of the step-through latency in the passive avoidance test. Conclusions : The findings suggest that AK indicated the antioxidant protective effects against $A{\beta}$-induced memory deficits, and therefore a potential lead natural therapeutic drug or agent for AD.

Beta-amyloid peptide degradation by aminopeptidase and its functional role in Alzheimer's disease pathogenesis

  • AhnJo, Sang-Mee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.04a
    • /
    • pp.77-90
    • /
    • 2006
  • Beta-amyloid peptide (A$\beta$) is a major component of senile plaques and its aggregation is considered to play a critical role in pathogenesis of Alzheimer's disease (AD). Aggregation of A$\beta$ could result from both increased synthesis and decreased degradation of A$\beta$. Our laboratory is interested in understanding the mechanism of A$\beta$ degradation in brain. Recently our laboratory identified a bacterial gene (SKAP) from Streptomyces sp KK565 whose protein product has an activity to cleave A$\beta$ and thus reduce the A$\beta$-induced neurotoxicity. The sequence analysis showed that this gene was closely related to aminopeptidase. Maldi-Tof analysis showed that the recombinant SKAP protein expressed in E. coli cleaves both A$\beta$ 40 and A$\beta$ 42 at the N-terminal of A$\beta$ while an aminopeptidase from Streptomyces griseus (SGAP) cleaves at the C-terminal. We also identified a mammalian homolog of SKAP and the recombinant mammalian protein expressed in Sf-9 insect cells showed a similar proteolytic activity to SGAP, cutting A$\beta$ at the C-terminus. I well discuss the detailed mechanism of the enzyme action and its functional implication in AD.

  • PDF

Effect of Sargassum serratifolium Extracts on β-Amyloid Production (β-아밀로이드 단백질 생성에 대한 톱니모자반(Sargassum serratifolium) 추출물의 효과)

  • Choi, Min-Woo;Jung, Cha-Gyun;Kim, Hyeung-Rak;Kim, Jae-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.1
    • /
    • pp.85-91
    • /
    • 2017
  • Alzheimer's disease (AD) is a progressive neurodegenerative disorder of insidious onset that causes gradual loss of memory and cognitive function, and it is the most common form of dementia in the elderly. AD is characterized by neuritic plaques and neurofibrillary tangles in the brain, together with loss of neuronal cells. The major neuropathological hallmark of AD is the accumulation of extracellular neurotoxic ${\beta}-amyloid$ ($A{\beta}$) peptides, such as $A{\beta}1-42$, in the brain. In the present study, we investigated the effect of sargachromenol (SCM), sargaquinoic acid (SQA) and sargahydroquinoic acid (SHQA) isolated from Sargassum serratifoilum ethanol extract (SSE) on $A{\beta}$ production in vitro using APP751-transfected Chinese hamster ovary cells (CHO-751). CHO-751 cells were treated with various concentrations of SSE, SCM, SQA and SHQA, and the level of extracellular $A{\beta}1-42$ was evaluated by enzyme-linked immunosorbent assay. SSE and SHQA reduced the production of $A{\beta}1-42$ in CHO-751 cells. Therefore, SHQA isolated from S. serratifolium has potential as an inhibitor of neurotoxic $A{\beta}$ peptide production.

Enhancement of Type A Macrophage Scavenger Receptor Expression by Ginsenoside Rg3 in Rat Microglia (흰쥐 뇌 소교세포에서 진세노사이드 Rg3의 Type A Macrophage Scavenger Receptor 발현 증진효과)

  • Joo, Seong-Soo;Hwang, Kwang-Woo;Lee, Do-Ik
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.147-150
    • /
    • 2005
  • Macrophage scavenger receptors (MSRs) induce microglial interaction with ${\beta}$-amyloid fibrils (fA${\beta}$) that are associated with Alzheimer's disease (AD). Although microglia are know n to have a dual effect on formation of plaque and clearance of fA${\beta}$ in the AD brain, receptor-mediated phagocytosis is a very important tool for preventing amyloid plaque via activated microglia in the early stage of AD. In the study, we examined whether ginsonoside Rg3 enhances the microglial Phagocytosis of A${\beta}$1-42 through Phagocytosis assay, gene expression (RT-PCR) and protein assay (western blots) for the cell responsiveness presented between Rg3-treated and non-treated groups. Fluro-labeled Ac-LDL and E.coli particles were used as control proteins for phagocytosis. In previous studies, this was a particularly interesting property of Rg3 in the stimulation and phagocytosis of macrophages in the periphery. We report here that ginsenoside Rg3 increased the expression of type-A MSR (MSR-A) in microglia and thus accelerated the phagocytosis with an effective degradation of engulfed fA${\beta}$. This result suggests that Rg3 may play an important role in removing fA${\beta}$ by enhancing the receptor-mediated phagocytosis. In addition, Rg3 could be a potential candidate for balancing the rate of production of fA${\beta}$ in AD brain.

Expression of TNF-$\alpha$ in rat microglia by ginsenoside Rb1

  • Joo, Seong-Soo;Kwon, Hee-Seung;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.204.1-204.1
    • /
    • 2003
  • Azheimer's Disease (AD) known as senile dementia accounts for 50% of all dementia cases and is in growing status as population goes up. Generally. AD is a progressive neurodegenerative disease and includes much of senile plaque in cerebral hippocampus and cortex in patient's brain. For decades. AD theory is explained by amyloid cascade hypothesis. In process of the hypothesis, amyloid hypothesis forms fibrillar form beta-amyloid peptide (A${\beta}$ peptide) and extraordinarily accumulates in brain tissue, and lastly senile plaque is formed, which pathologically affect the brain. (omitted)

  • PDF