• 제목/요약/키워드: amyloid ${\beta}$

검색결과 427건 처리시간 0.027초

Presenilin-2 mutation perturbs ryanodine receptor-mediated calcium homeostasis, caspase-3 activation and increases vulnerability of PC12 cells

  • Hwang, In-Young;Shin, Im-Chul;Hwang, Dae-Youn;Kim, Young-Kyu;Yang, Ki-Hwa;Ha, Tae-Yeol;Hong, Jin-Tae
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 춘계학술대회 논문집
    • /
    • pp.73-74
    • /
    • 2003
  • Familial form of Alzheimer's disease (FAD) is caused by mutations in presenilin-1 and presenilin-2 (PS2). PS1 and PS2 mutation are known to similar effects on the production of amyloid $\beta$ peptide (A$\beta$) and cause of cell death in the Alzheimer's brain. The importance of the alternation of calcium homeostasis in the neuronal cell death by PS1 mutation in a variety of experimental system has been demonstrated. (omitted)

  • PDF

Calcium Signal Dependent Cell Death by Presenilin-2 Mutation in PC12 Cells and in Cortical Neuron from Presenilin-2 Mutation Transgenic Mice

  • Lee, Sun-Young;Song, Youn-Sook;Hwang, Dae-Yeun;Kim, Young-Kyu;Yoon, Do-Young;Lim, Jong-Seok;Hong, Jin-Tae
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.145-145
    • /
    • 2003
  • Familial form of Alzheimer's disease (FAD) is caused by mutations in presenilin-1 (PS-1) and presenilin-2 (PS-2). PS1 and PS2 mutation are known to similar effects on the production of amyloid ${\beta}$ peptide (A${\beta}$) and cause of neuronal cell death in the brain of patient of AD. The importance of the alternation of cellular calcium homeostasis in the neuronal cell death by PS1 mutation in a variety of experimental systems has been demonstrated.(omitted)

  • PDF

상산(常山)이 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響) (The Effects of Dichroa febrifuga(DIF) Extract on the Alzheimer's Disease Model)

  • 이승희;정인철;이상룡
    • 동의신경정신과학회지
    • /
    • 제16권1호
    • /
    • pp.81-96
    • /
    • 2005
  • This experiment was designed to investigate the effect of Dichroa febrifuga(DIF) on the Alzheimer’s disease. The effects of DIF extract on $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA of THP-1 cell treated by $A{\beta}$ plus LPS and amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell treated by $A{\beta}$ plus $rIL-1{\beta}$ and AChE activity of PC-12 cell lysate treated by $A{\beta}$ plus $rIL-1{\beta}$ and behavior of memory deficit mice induced by scopolamine and mice glucose, uric acid, AChE activity of memory deficit rats induced by scopolamine were investigated, respectively. The results were summarized as follows ; 1. DIF extract suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta}$. 2. DIF extract suppressed $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA in THP-1 cell treated by LPS. 3. DIF extract suppressed AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. 4. DIF extract increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit rats induced by scopolamine. 5. DIF extract group showed significantly inhibitory effect on the memory deficit of mice induced by scopolamine in the experiment of Morris water maze. According to the above results, it is suggested that DIF extract might be usefully applied for prevention and treatment of Alzheimer’s disease and memory deficit.

  • PDF

S-Allyl-L-cysteine, a Garlic Compound, Selectively Protects Cultured Neurons from ER Stress-induced Neuronal Death

  • Ito Yoshihisa
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2004년도 Annual Meeting of the Korean Society ofApplied Pharmacology
    • /
    • pp.124-128
    • /
    • 2004
  • We have assessed amyloid ${\beta}-peptide$ $(A{\beta})-induced$ neurotoxicity in primary neurons and organotypic hippocampal slice cultures (OHC) in rat. Exposing cultured hippocampal and cerebellar granule neurons to $A{\beta}$ resulted in a decrease of MTT reduction, and in destruction of neuronal integrity. Treatment of these neurons with tunicamycin, an inhibitor of N-glycosylation in the endoplasmic reticulum (ER), also decreased MTT reduction in these neurons. S-allyl-L-cysteine (SAC), an active organosulfur compound in aged garlic extract, protected hippocampal but not cerebellar granule neurons against $A{\beta}$- or tunicamycin-induced toxicity. In the hippocampal neurons, protein expressions of casapse-12 and GRP 78 were significantly increased after $A{\beta}_{25-35}$ or tunicamycin treatment. The increase in the expression of caspase-12 was suppressed by simultaneously adding $1{\mu}M$ SAC in these neurons. In contrast, in the cerebellar granule neurons, the expression of caspase-12 was extremely lower than that in the hippocampal neurons, and an increase in the expression by $A{\beta}_{25-35}$ or tunicamycin was not detected. In OHC, ibotenic acid (IBO), a NMDA receptor agonist, induced concentration-dependent neuronal death. When $A{\beta}$ was combined with IBO, there was more intense cell death than with IBO alone. SAC protected neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by IBO in combination with $A{\beta}$, although there was no change in the CA1 area. Although protein expression of casapse-12 in the CA3 area and the DG was significantly increased after the simultaneous treatment of AI3 and IBO, no increase in the expression was observed in the CA1 area. These results suggest that SAC could protect against the neuronal cell death induced by the activation of caspase-12 in primary cultures and OHC. It is also suggested that multiple mechanisms may be involved in neuronal death induced by AI3 and AI3 in combination with IBO.

  • PDF

A Correlative Study on Aβ and CD95 Pathway Independent to Ca2+ Dependent Protease and Activation of Caspase Activation

  • Tuyet, Pham Thi Dieu
    • 통합자연과학논문집
    • /
    • 제7권1호
    • /
    • pp.25-38
    • /
    • 2014
  • Amyloid-${\beta}$-peptide ($A{\beta}$) is important in the pathogenesis of Alzheimer's disease (AD). Calpain ($Ca^{2+}$-dependent protease) and caspase-8 (the initiating caspase for the extrinsic, receptor-mediated apoptosis pathway) have been implicated in $AD/A{\beta}$ toxicity. We found that $A{\beta}$ promoted degradation of calpastatin (the specific endogenous calpain inhibitor); calpastatin degradation was prevented by inhibitors of either calpain or caspase-8. The results implied a cross-talk between the two proteases and suggested that one protease was responsible for the activity of the other one. In neuron-like differentiated PC12 cells, calpain promotes active caspase-8 formation from procaspase-8 via the $A{\beta}$ and CD95 pathways, along with degradation of the procaspase-8 processing inhibitor caspase-8 (FLICE)-like inhibitory protein, short isoform (FLIPS). Inhibition of calpain (by pharmacological inhibitors and by overexpression of calpastatin) prevents the cleavage of procaspase-8 to mature, active caspase-8, and inhibits FLIPS degradation in the $A{\beta}$-treated and CD95-triggered cells. Increased cellular Ca2+ per se results in calpain activation but does not lead to caspase-8 activation or FLIPS degradation. The results suggest that procaspase-8 and FLIPS association with cell membrane receptor complexes is required for calpain-induced caspase-8 activation. The results presented here add to the understanding of the roles of calpain, caspase- 8, and CD95 pathway in $AD/A{\beta}$ toxicity. Calpain-promoted activation of caspase-8 may have implications for other types of CD95-induced cell damage, and for nonapoptotic functions of caspase-8. Inhibition of calpain may be useful for modulating certain caspase-8-dependent processes.

BV-2 미세아교세포에서 메트포르민 또는 알파-리포산의 염증반응과 NLRP3 인플라마솜 약화에 관한 연구 (Metformin or α-Lipoic Acid Attenuate Inflammatory Response and NLRP3 Inflammasome in BV-2 Microglial Cells)

  • 최혜림;하지선;김인식;양승주
    • 대한임상검사과학회지
    • /
    • 제52권3호
    • /
    • pp.253-260
    • /
    • 2020
  • 알츠하이머 병은 인지 기능 저하로 인한 치매 발생으로 설명할 수 있는 만성 및 진행성 신경 퇴행성 질환이다. 알츠하이머 병의 특징은 세포 외 및 세포 내 아밀로이드 플라크의 형성이다. 아밀로이드 베타는 알츠하이머 병의 특징이며 미세아교세포는 아밀로이드 베타의 존재하에 활성화될 수 있다. 활성화된 미세아교세포는 전 염증성 사이토카인을 분비한다. 게다가, S100A9는 염증의 중요한 선천성 전 염증 기여자이며 알츠하이머 병에 잠재적인 기여자로 알려져 있다. 이 연구는 아밀로이드 베타 및 S100A9이 처리된 BV-2 세포에서 염증반응 및 NLRP3 인플라마솜 활성화에 대한 메트포르민 및 알파리포산의 효과를 조사했다. 메트포르민과 알파-리포산은 종양 괴사 인자-알파 및 일터루킨-6와 같은 염증성 사이토카인을 약화시킨다. 또한 메트포르민과 알파-리포산은 JNK, ERK, p38의 인산화를 억제하고, NF-kB 경로 및 NLRP3 인플라마솜의 활성화를 억제했다. 또한 메트포르민과 알파-리포산은 M1 표현형인 ICAM1의 수준을 감소시킨 반면 M2 표현형인 ARG1은 증가시켰다. 이러한 발견은 메트포르민과 알파-리포산이 아밀로이드베타 및 S100A9에 의한 신경 염증 반응에 대한 치료제가 될 수 있음을 시사한다.

반하가 CT105에 의한 신경세포 상해 및 백서의 기억에 미치는 영향 (Neuroprotective and Memory Enhancing Effects of Pinelliae rhizoma Extract)

  • 강상렬;이소연;윤현덕;신오철;박창국;박치상
    • 대한한의학회지
    • /
    • 제26권3호
    • /
    • pp.27-42
    • /
    • 2005
  • Objectives : Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease characterized by amyloid plaques and neurofibrillary tangles. These plaques are associated with degenerating neuronal processes and consist primarily of fibrillary aggregates of beta-amyloid$ protein, generated from amyloid precursor protein (APP). Another amyloidogenic fragment, the carboxyl terminus (CT) of APP, which is composed of 99-105 amino acid residues containing the complete $A{\beta}$ sequence, also appears to be toxic to neurones. Recent evidence suggest that CT105, carboxy terminal 105 amino acids peptide fragment of APP, may be an important factor causing neurotoxicity in AD. Methods : Although a variety of oriental prescriptions including Pinelliae rhizoma have traditionally been utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet been fully elucidated. In the present study, we investigated effects of the dichloromethane extract of Pinelliae rhizoma (PINR) on neurotoxicity and the formation of reactive oxygen species (ROS) and nitric oxide (NO) in SK-N-SH cells overexpressed with CT105. In addition, we evaluated its radical scavenging activity and effects on acetylcholinesterase (AChE) activity. Furthermore, effects on cognitive deficits induced by scopolamine treatment in rats were evaluated. Results ; We found in this study that PINR significantly inhibited apoptotic neuronal death induced by CT105 overexpression in SK-N-SH cells. Based on morphological examinations by phase-contrast microscopy, PINR reversed apoptotic changes of CT105-expressed cells. It was also found that PINR significantly promoted neurite outgrowth and inhibited formation of ROS nd NO. PINR was shown to scavenge DPPH radicals and noncompetitively inhibit AChE activity. Furthermore, it reduced scopolamine-induced memory impairment in rata, assessed by passive avoidance test. Conclusions : Taken together, these results demonstrate that PINR exhibits neuroprotective, antioxidant, and memory enhancing effects, and therefore may bs beneficial for the treatment of AD.

  • PDF

Investigation of the Copper (Cu) Binding Site on the Amyloid beta 1-16 (Aβ16) Monomer and Dimer Using Collision-induced Dissociation with Electrospray Ionization Tandem Mass Spectrometry

  • Ji Won Jang;Jin Yeong Lim;Seo Yeon Kim;Jin Se Kim;Ho-Tae Kim
    • Mass Spectrometry Letters
    • /
    • 제14권4호
    • /
    • pp.153-159
    • /
    • 2023
  • The copper ion, Cu(II), binding sites for amyloid fragment Aβ1-16 (=Aβ16 ) were investigated to explain the biological activity difference in the Aβ16 aggregation process. The [M+Cu+(z-2)H]z+ (z = 2, 3 and 4, M = Aβ16 monomer) and [D+Cu+(z-2)H]z+ (z = 3 and 5, D = Aβ16 dimer) structures were investigated using electrospray ionization (ESI) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Fragment ions of the [M+Cu+(z-2)H]z+ and [D+Cu+(z-2)H]z+ complexes were observed using collision-induced dissociation MS/MS. Three different fragmentation patterns (fragment "a", "b", and "y" ion series) were observed in the MS/MS spectrum of the (Aβ16 monomer or dimer-Cu) complex, with the "b" and "y" ion series regularly observed. The "a" ion series was not observed in the MS/MS spectrum of the [M+Cu+2H]4+ complex. In the non-covalent bond dissociation process, the [D+Cu+3H]5+ complex separated into three components ([M+Cu+H]3+, M3+, and M2+), and the [M+Cu]2+ subunit was not observed. The {M + fragment ion of [M+Cu+H]3+} fragmentation pattern was observed during the covalent bond dissociation of the [D+Cu +3H]5+ complex. The {M + [M+Cu+H]3+} complex geometry was assumed to be stable in the [D+Cu+3H]5+ complex. The {M + fragment ion of [M+Cu]2+} fragmentation pattern was also observed in the MS/MS spectrum of the [D+Cu+H]3+ complex. The {M + [y9+Cu]1+} fragment ion was the characteristic fragment ion. The [D+Cu+H]3+ and [D+Cu+3H]5+ complexes were likely to form a monomer-monomer-Cu (M-M-Cu) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

Structure of CT26 in the C-terminal of Amyloid Precursor Protein Studied by NMR Spectroscopy

  • Kang, Dong-Il;Baek, Dong-Ha;Shin, Song-Yub;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1225-1228
    • /
    • 2005
  • C-terminal fragments of APP (APP-CTs), that contain A$\beta$ sequence, are found in neurotic plaques, neurofibrillary tangles and the cytosol of lymphoblastoid cells obtained from AD patients. CT26, Thr639-Asp664 (TVIVITLVMLKKKQYTSIHH GVVEVD) includes not only the transmembrane domain but also the cytoplasmic domain of APP. This sequence is produced from cleavage of APP by caspase and $\gamma$-secretase. In this study, the solution structure of CT26 was investigated using NMR spectroscopy and circular dichroism (CD) spectropolarimeter in various membrane-mimicking environments. According to CD spectra and the tertiary structure of CT26 determined in TFE-containing aqueous solution, CT26 has an α-helical structure from $Val^{2}\;to\;Lys^{11}$ in TFE-containing aqueous solution. However, according to CD data, CT26 adopts a $\beta$-sheet structure in the SDS micelles and DPC micelles. This result implies that CT26 may have a conformational transition between $\alpha$-helix and $\beta$-sheet structure. This study may provide an insight into the conformational basis of the pathological activity of the C-terminal fragments of APP in the model membrane.

Antioxidant and Neuroprotective Effects of Hesperidin and its Aglycone Hesperetin

  • Cho, Jung-Sook
    • Archives of Pharmacal Research
    • /
    • 제29권8호
    • /
    • pp.699-706
    • /
    • 2006
  • The present study evaluated antioxidant and neuroprotective activities of hesperidin, a flavanone mainly isolated from citrus fruits, and its aglycone hesperetin using cell-free bioassay system and primary cultured rat cortical cells. Both hesperidin and hesperetin exhibited similar patterns of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. While hesperidin was inactive, hesperetin was found to be a potent antioxidant, inhibiting lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In consistence with these findings, hesperetin protected primary cultured cortical cells against the oxidative neuronal damage induced by $H_2O_2$ or xanthine and xanthine oxidase. In addition, it was shown to attenuate the excitotoxic neuronal damage induced by excess glutamate in the cortical cultures. When the excitotoxicity was induced by the glutamate receptor subtype-selective ligands, only the N-methyl-D-aspartic acid-induced toxicity was selectively and markedly inhibited by hesperetin. Furthermore, hesperetin protected cultured cells against the $A_{{\beta}(25-35)}-induced$ neuronal damage. Hesperidin, however, exerted minimal or no protective effects on the neuronal damage tested in this study. Taken together, these results demonstrate potent antioxidant and neuroprotective effects of hesperetin, implying its potential role in protecting neurons against various types of insults associated with many neurodegenerative diseases.