• Title/Summary/Keyword: amplitude variation analysis

Search Result 218, Processing Time 0.024 seconds

Probabilistic analysis of micro-film buckling with parametric uncertainty

  • Ying, Zuguang;Wang, Yong;Zhu, Zefei
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.697-708
    • /
    • 2014
  • The intentional buckling design of micro-films has various potential applications in engineering. The buckling amplitude and critical strain of micro-films are the crucial parameters for the buckling design. In the reported studies, the film parameters were regarded as deterministic. However, the geometrical and physical parameters uncertainty of micro-films due to manufacturing becomes prominent and needs to be considered. In the present paper, the probabilistic nonlinear buckling analysis of micro-films with uncertain parameters is proposed for design accuracy and reliability. The nonlinear differential equation and its asymptotic solution for the buckling micro-film with nominal parameters are firstly established. The mean values, standard deviations and variation coefficients of the buckling amplitude and critical strain are calculated by using the probability densities of uncertain parameters such as the film span length, thickness, elastic modulus and compressive force, to reveal the effects of the film parameter uncertainty on the buckling deformation. The results obtained illustrate the probabilistic relation between buckling deformation and uncertain parameters, and are useful for accurate and reliable buckling design in terms of probability.

An Analysis of the effect of I/Q mismatch on EVM in the transmitter of PAN (Personal Area Network용 무선 송신부의 EVM을 만족하기 위한 I/Q mismatch의 영향 분석)

  • Park, Yong-Kuk;Lee, Min-Goo;Kang, Jung-Hoon;Yoo, Jun-Jae;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1939_1941
    • /
    • 2009
  • The modulation quality of the RF transmitter in a wireless communication system usually affects system performance and it mostly depends on both a nonlinearity and a distortion, from the intermodulation products and the I/Q mismatch such as I/Q amplitude error and a local phase error, respectively. This paper focused on how much the error vector magnitude(EVM) which describes the modulation accuracy changes according to the variation of the I/Q mismatch components at I/Q modulator. For this work, the equation for the EVM including the I/Q mismatch components can be induced and calculated in accordance with the variation of the I/Q mismatch components. Consequently, the effect of I/Q mismatch components on the EVM, which is required in the transmitter specification of Personal Area Network, can be clearly analyzed.

  • PDF

Analysis of unsteady temperature distribution in a cylinder for rifle barrel disign (원통형 용기의 비정상온도해석)

  • ;;;Lee, Hung Joo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.173-180
    • /
    • 1979
  • Temperature distriburion in a hollow chlinder has been analyzed mathematically. Unsteady condition considered assumed a constant heat flux input from the inside. The results are compared with experimental results of surface temperature rise of a gun barrel during continuous firing. Their agreements are acceptable. Effects of various dimensionless parameters on the surface temperature rise are discussed. For small Biot numbers, the external survface temperature approaches more rapidly to the steady temperature. Temperature difference between internal and external surfaces becomes greater for small Biot number. Steady solution assumed that the gas temperature inside the cylinder varies periodically. Relative amplitude and phase angles between the gas temperature and the internal or external surface temperature are obtained. Phase angles become smaller for large radiancy of gas temperature variation, small external Biot number, or large internal biot number. Relative amplitudes become samller as radiancy of gas temperature variation and internal Biot number become smaller. or external Biot number becomes larger. The solution obtained in this paper can be applied to gun barrels, heat pipes used in heat excangers, and reciprocation engines.

Analysis on Fatigue Fracture at Cam Shaft (캠축에서의 피로파괴해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.102-108
    • /
    • 2008
  • This study investigates the fatigue life and the damage possibility of cam shaft by the fatigue tool of Ansys. Among nonconstant fatigue loads, the case of 'SAE Bracket History' which is severest at the variation of load tends to be most unstable. The maximum relative damage in case of 'SAE Bracket History' is occurred near the average stress '0' and this case can be shown to have the possibility to take more damage than other cases. The case of 'Sample History' which becomes a little slow at the variation of load tends to be most stable. But there is most damaged possibility of 5% as 7 times at the range of mean stress from 0Pa to -104MPa and amplitude stress from 0MPa to 104MPa than the case of 'SAE Bracket History' or 'SAE Transmission'.

  • PDF

Analysis of Seismic Velocity Change and AVO Response Depending on Saturation of Kerogen and GOR in Shale Reservoirs (셰일 저류층에서 케로젠, GOR 변화에 따른 속도 변화 및 AVO 반응 분석)

  • Choi, Junhwan;Lee, Jaewook;Byun, Joongmoo;Kim, Bona;Kim, Soyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Recently, the studies about rock physics model (RPM) in shale reservoir are widely performed. In shale reservoir, the degree of the maturity can be estimated by kerogen and GOR (Gas-Oil Ratio). The researches on the rock physics model of shale reservoir with the amount of kerogen have been actively carried out but not with GOR. Thus, in this study, we analyzed the changes in seismic velocity and density, and AVO (Amplitude Variation with Offset) response depending on changes in GOR and the amount of kerogen. Since the shale consists of plate-like particles, it has vertical transverse isotropy (VTI). Therefore we estimated the seismic velocity and density by using Backus averaging method and analyzed AVO responses based on these estimated properties. The results of analysis showed that the changes in the velocity with the GOR variation are small but the velocity changes with the variation in kerogen amount are relatively larger. In case, GOR 180 (Litre/Litre) which is boundary between heavy oil and light oil, when volume fraction of kerogen increased from 5% to 35%, the P-wave velocity normal to the layering increased 51%. That is, it helps estimating maturity of kerogen through the velocity. Meanwhile, when rates of oil-gas mixture are large, the effect of GOR variation on the velocity change became larger. In case volume fraction of kerogen is 5%, the P-wave velocity normal to the layering was estimated $1.46km/s^2$ in heavy oil (GOR 40) but $1.36km/s^2$ in light oil (GOR 300). The AVO responses analysis showed class 4 regardless of the GOR and amount of kerogen because variation of poisson's ratio is small. Therefore, shale reservoir has possibility to have class 4.

Seismic Data Processing For Gas Hydrate using Geobit (Geobit을 이용한 가스 하이드레이트 탐사자료 처리)

  • Jang Seong-Hyung;Suh Sang-Yong;Chung Bu-Heung;Ryu Byung-Jae
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.184-190
    • /
    • 1999
  • A study of gas hydrate is a worldwide popular interesting subject as a potential energy source. A seismic survey for gas hydrate have performed over the East sea by the KIGAM since 1997. General indicators of natural submarine gas hydrates in seismic data is commonly inferred from the BSR (Bottom Simulating Reflection) that occurred parallel to the see floor, amplitude decrease at the top of the BSR, amplitude Blanking at the bottom of the BSR, decrease of the interval velocity, and the reflection phase reversal at the BSR. So the seismic data processing for detecting gas hydrates indicators is required the true amplitude recovery processing, a accurate velocity analysis and the AVO (Amplitude Variation with Offset) analysis. In this paper, we had processed the field data to detect the gas hydrate indicators, which had been acquired over the East sea in 1998. Applied processing modules are spherical divergence, band pass filtering, CDP sorting and accurate velocity analysis. The AVO analysis was excluded, since this field data had too short offset to apply the AVO analysis. The accurate velocity analysis was performed by XVA (X-window based Velocity Analysis). This is the method which calculate the velocity spectrum by iterative and interactive. With XVA, we could determine accurate stacking velocity. Geobit 2.9.5 developed by the KIGAM was used for processing data. Processing results say that the BSR occurred parallel to the sea floor were shown at $367\~477m$ depths (two way travel time about 1800 ms) from the sea floor through shot point 1650-1900, the interval velocity decrease around BSR and the reflection phase reversal corresponding to the reflection at the sea floor.

  • PDF

Scattering of a Kelvin Wave by a Cylindrical Island (원통형 섬에 의한 Kelvin 파의 산란)

  • Lee, Sang-Ho;Kim, Kuh
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.177-185
    • /
    • 1993
  • The theory for long wave scattering (Proudman, 1914: Longuet-Higgins, 1970) is applied to a tidal-frequency Kelvin wave propagating around a small cylindrical island in a shelf sea of uniform depth. The theory includes the effects of bottom friction on wave propagation. The theoretical analysis of the Kelvin wave around the island. this amplitude change results in a uniform amplitude of the total wave along the circumference of the island in an inviscid fluid, and the dynamic cause of this is explained in terms of Coriolis effects. Bottom friction attenuates the amplitude of the total wave from the frontal side of the island to the leeward side, but the amplitude variation along the coast becomes symmetric to the line connecting both idea. The phase of the scattered wave contributes to more rapid travel of the total wave in the front and leeward side than farther offshore. The effects of bottom friction on the wave phase around the island are negligible.

  • PDF

Analysis of the Simon effect using Amplitude of RTA-ERP and Response time (응답속도정합-유발전위의 진폭과 응답 속도를 이용한 사이먼효과 분석)

  • Kim, HyeJin;Yoo, SunKook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.179-185
    • /
    • 2013
  • In this paper, the RTA-ERP(Response Time Aligned-Evoked Relative Potential) was modelled to analyze the effect of motor activation pattern in response to visual sensory stimuli. Simon effect was analysed using the amplitude response of RTA-ERP and measured response time. The 'odd number' experiments, which identify an odd number mixed with same numbers, was performed with 15 healthy adult participants(9 males and 6 females, whose mean age of 31) for 7 minutes for each participant. Throughout experimentation, we observed that the proposed RTA-ERP can compensate the timing variation due to different neural processing procedures in the brain, and shows enhanced LRP(Lateralized Readiness Potential) and Pe(Error Related Positivity). Regarding to 'congruence' and 'incongruence' testing patterns, the amplitude of RTA-ERP and the response time for the 'congruence' are $0.03{\mu}V$ larger, and 43 ms faster than those for the 'incongruence', respectively. The amplitude characteristics of RTA-ERP, obtained by synchronizing the onset times with respect to response time, corresponds more likely to that of P300 in the ERP pattern (the characteristics of the Simon effect).

Seismic analysis of shear wall buildings incorporating site specific ground response

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.433-453
    • /
    • 2016
  • During earthquake, the motion of ground is affected significantly by source characteristics, source-to-site path properties and local site conditions. Due to the influence of local soil conditions different places experience distinctive amplitude of surface ground motion. Ground response analysis of a specific site utilizing the borehole information at different locations is done in present study. The ground motion with the highest peak ground acceleration for this site obtained from the ground response analysis is used in finite element soil-structure interaction analysis of multi-storey shear wall buildings with various positions of shear walls. The variation in seismic response of buildings and advantageous position of shear wall are determined. The study reveals that providing shear wall at the core of buildings at the specific site is advantageous among all shear wall configurations considered.

Characteristic Analysis of Single Phase Line-start Permanent Magnet Synchronous Motor Considering Circuit Parameters (단상 직립 기동형 영구자석 동기기의 회로정수에 따른 특성 해석)

  • 강규홍;홍정표
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.262-270
    • /
    • 2003
  • In this paper, the characteristics of single-phase line-start permanent magnet synchronous motor driven by constant voltage are analyzed on d-q axis vector diagram and compared with that of current controlled motor. The coupled method of symmetrical coordinates and d-q axis voltage equation are applied to the analysis method like the analysis of single-phase induction motor. From the result of the analysis, it is seen that motors driven by constant voltage source have effects on not only the amplitude of current and torque but also current and current phase angle, so overall characteristics such as power factor and load angle are affected by circuit parameters. For precise analysis and design of single-phase line-start synchronous motor, its characteristics should be analyzed on d-q axis vector plan in consideration of the variation of circuit parameters.