• Title/Summary/Keyword: amplitude method

Search Result 2,237, Processing Time 0.028 seconds

Simulation of non-Gaussian stochastic processes by amplitude modulation and phase reconstruction

  • Jiang, Yu;Tao, Junyong;Wang, Dezhi
    • Wind and Structures
    • /
    • v.18 no.6
    • /
    • pp.693-715
    • /
    • 2014
  • Stochastic processes are used to represent phenomena in many diverse fields. Numerical simulation method is widely applied for the solution to stochastic problems of complex structures when alternative analytical methods are not applicable. In some practical applications the stochastic processes show non-Gaussian properties. When the stochastic processes deviate significantly from Gaussian, techniques for their accurate simulation must be available. The various existing simulation methods of non-Gaussian stochastic processes generally can only simulate super-Gaussian stochastic processes with the high-peak characteristics. And these methodologies are usually complicated and time consuming, not sufficiently intuitive. By revealing the inherent coupling effect of the phase and amplitude part of discrete Fourier representation of random time series on the non-Gaussian features (such as skewness and kurtosis) through theoretical analysis and simulation experiments, this paper presents a novel approach for the simulation of non-Gaussian stochastic processes with the prescribed amplitude probability density function (PDF) and power spectral density (PSD) by amplitude modulation and phase reconstruction. As compared to previous spectral representation method using phase modulation to obtain a non-Gaussian amplitude distribution, this non-Gaussian phase reconstruction strategy is more straightforward and efficient, capable of simulating both super-Gaussian and sub-Gaussian stochastic processes. Another attractive feature of the method is that the whole process can be implemented efficiently using the Fast Fourier Transform. Cases studies demonstrate the efficiency and accuracy of the proposed algorithm.

An Amplitude Warping Approach to Intra-Speaker Normalization for Speech Recognition (음성인식에서 화자 내 정규화를 위한 진폭 변경 방법)

  • Kim Dong-Hyun;Hong Kwang-Seok
    • Journal of Internet Computing and Services
    • /
    • v.4 no.3
    • /
    • pp.9-14
    • /
    • 2003
  • The method of vocal tract normalization is a successful method for improving the accuracy of inter-speaker normalization. In this paper, we present an intra-speaker warping factor estimation based on pitch alteration utterance. The feature space distributions of untransformed speech from the pitch alteration utterance of intra-speaker would vary due to the acoustic differences of speech produced by glottis and vocal tract. The variation of utterance is two types: frequency and amplitude variation. The vocal tract normalization is frequency normalization among inter-speaker normalization methods. Therefore, we have to consider amplitude variation, and it may be possible to determine the amplitude warping factor by calculating the inverse ratio of input to reference pitch. k, the recognition results, the error rate is reduced from 0.4% to 2.3% for digit and word decoding.

  • PDF

Investigation of Logisitic Regression Equation of Vacuous Pulse and Replete Pulse for Efficacy Evaluation of Clip-type Pulsimeter by using Magnetic Hall Device (자성홀소자를 이용한 집게형 맥진기의 유효성 평가를 위한 허맥과 실맥 로지스틱 회귀식 탐색)

  • Yu, Jun-Sang;Chang, Sei-Jin;Sun, Seung-Ho;Hong, Yu-Sik;Lee, Sang-Suk
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.17 no.1
    • /
    • pp.63-76
    • /
    • 2013
  • The aims of this study are to investigate a logisitic regression equation of the vacuous pulse and the replete pulse for efficacy evaluation of clip-type pulsimeter by using magnetic Hall device. To evaluate the efficacy of clip-type pulsimeter by using magnetic Hall device as sensing the minute movement of a radial artery, one research clinical trial have been performed. The number of subject was 120, the clinical data of patients did treated with a normal statistical method. The systolic peak amplitude, the reflective peak amplitude and time, and the notch peak amplitude and time are analyzed major efficacy parameters to discern the vacuous pulse and the replete pulse. The equations included of five parameters such as systolic peak amplitude, the reflective peak amplitude and time, and the notch peak amplitude and notch amplitude time for determination of the vacuous pulse and the replete pulse were deducted by statistical logistic regression method. It suggests that the logistic regression equations are possible to develop the oriental algorithm for pulse diagnosis.

Smart Dimming Control Algorithm for Reducing Power Consumption of LED TV Backlight (LED TV 백라이트 소비전력 저감을 위한 스마트 디밍 알고리즘 개발)

  • Ryu, Je-Seung;Park, Ju-Hee;Lim, Seong-Ho;Kim, Tae-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.320-326
    • /
    • 2014
  • In this paper, the new smart dimming algorithm which is mixed with PWM and PAM control method is proposed for reducing the power consumption of LED TV Backlight. The proposed technique is using the curve characteristics of LED forward voltage and current which is proportionally changing LED forward voltage as changing LED forward current. Therefore, each PWM and PAM control method has different LED forward voltage and current in the same brightness condition. The PWM control method adjusts the brightness of LED TV Backlight by only varying the duty ratio of PWM and constantly sustaining the amplitude of LED forward current and voltage. So, the level of LED forward current and voltage in the PWM control method is relatively high and constant regardless of duty ratio of PWM. On the other hand, the PAM control method adjusts the brightness of LED TV Backlight by directly varying the level of LED forward current. So, the level of LED forward current and voltage in the PAM control method is lowered according to the brightness level. For the above-mentioned reason, the PAM control method has the advantage of reducing the total power consumption of LED TV Backlight at the brightness condition of below 100%, compared with PWM control method. By implementing this characteristic to LED driver circuit with control algorithm in MCU, the power consumption of LED TV Backlight can expect to be reduced. The effectiveness of the proposed method, new smart dimming algorithm, CPWAM(=Conditional Pulse Width Amplitude Modulation), has been verified by experimental results.

Music and Voice Separation Using Log-Spectral Amplitude Estimator Based on Kernel Spectrogram Models Backfitting (커널 스펙트럼 모델 backfitting 기반의 로그 스펙트럼 진폭 추정을 적용한 배경음과 보컬음 분리)

  • Lee, Jun-Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, we propose music and voice separation using kernel sptectrogram models backfitting based on log-spectral amplitude estimator. The existing method separates sources based on the estimate of a desired objects by training MSE (Mean Square Error) designed Winer filter. We introduce rather clear music and voice signals with application of log-spectral amplitude estimator, instead of adaptation of MSE which has been treated as an existing method. Experimental results reveal that the proposed method shows higher performance than the existing methods.

A study of natural convection in non-Newtonian fluids induced by a vertical wavy surface (기복을 이루는 수직벽에서 비뉴턴유체의 자연대류에 관한 연구)

  • Kim, Eun-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3686-3694
    • /
    • 1996
  • A numerical investigation of natural convection flow along irregular vertical surfaces is reported. A transformation method is applied to the problem of natural convection under the assumption of a large Grashof number. A vertical wavy surface is used as an example to demonstrate the advantages of the transformation method, and to show the heat transfer mechanism near such surfaces. Surface non-uniformities on the boundary layer flow induced by a constant was temperature, semi-infinite surface are investigated. Also the effects of Prandtl number, flow index, and surface amplitude in Non-Newtonian fluids are discussed. When possible, the comparison of the numerical results shows a good agreement. The amplitude is proportional to the amplitude of a wavy surface. The results demonstrate that the local heat flux along a wavy surface is smaller than that of a flat surface. The frequency of the wavy surface is half that of the local heat transfer rate. The amplitude of the local Nusselt number gradually decreases downstream where the natural convection boundary layer grows thick.

A Simulation Modeling for Rail Potential and Leakage Current Analysis in DC Traction System (직류 전기철도에서의 레일전위 및 누설전류 해석을 위한 시뮬레이션 모델링)

  • Yoon, Yim-Joong;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.196-201
    • /
    • 2008
  • In DC traction systems, a part of feedback current returning through rails becomes leakage current, illumination on a metal laid underground results from the leakage current to ground. To prevent the leakage current on rails, feedback rails almost have insulated with the ground. Insulation between rails and the ground causes that the earth method changes a isolated method in DC traction systems. the rail potential rise results in the isolated method. the rail potential rise causes an electric shock when a person touches the ground and rolling stock. To decrease the rail potential rise and leakage current, there are methods for reducing the feedback resistance and current of rails, increasing the leakage resistance, decreasing the distance between substations. But it are necessary to forecast and analyze the rail potential and amplitude of leakage current. In this paper, we modeled DC traction systems and feedback circuit to simulate the rail potential and amplitude of leakage current using PSCAD/EMTDC that is power analysis program, forecasted the rail potential and amplitude of leakage current about changing various parameters in the electric circuit. By using the simulation model, we easily will forecast the rail potential and amplitude of leakage current in case of a level of basic design and maintenance in electric railway systems, valuably use basic data in case of system selection.

  • PDF

Bayesian Parameter Estimation for Prognosis of Crack Growth under Variable Amplitude Loading (변동진폭하중 하에서 균열성장예지를 위한 베이지안 모델변수 추정법)

  • Leem, Sang-Hyuck;An, Da-Wn;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1299-1306
    • /
    • 2011
  • In this study, crack-growth model parameters subjected to variable amplitude loading are estimated in the form of a probability distribution using the method of Bayesian parameter estimation. Huang's model is employed to describe the retardation and acceleration of the crack growth during the loadings. The Markov Chain Monte Carlo (MCMC) method is used to obtain samples of the parameters following the probability distribution. As the conventional MCMC method often fails to converge to the equilibrium distribution because of the increased complexity of the model under variable amplitude loading, an improved MCMC method is introduced to overcome this shortcoming, in which a marginal (PDF) is employed as a proposal density function. The model parameters are estimated on the basis of the data from several test specimens subjected to constant amplitude loading. The prediction is then made under variable amplitude loading for the same specimen, and validated by the ground-truth data using the estimated parameters.

Compensation of Position Error due to Amplitude Imbalance in Resolver Signals

  • Hwang, Seon-Hwan;Kwon, Young-Hwa;Kim, Jang-Mok;Oh, Jin-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.748-756
    • /
    • 2009
  • This paper presents a compensation algorithm for position error due to an amplitude imbalance between resolver output signals. Resolvers are typically used to obtain absolute position information for motor drive systems in severe environments. Position error is caused by an amplitude imbalance of the resolver output signals. As a result, the d- and q-axis currents of synchronous reference frame have periodic ripples in the stator fundamental frequency in permanent magnet synchronous motor (PMSM) drive systems. Therefore, this paper proposes a compensation algorithm to reduce the position error generated by the amplitude imbalance. The proposed method does not require any additional hardware, and reduces computation time with a simple integral operation according to rotor position. In addition, the position error can be directly compensated for by the estimated position error. The effectiveness of the proposed compensation algorithm is verified through several simulations and experiments.

Amplitude Control of Phase Modulation for Dithered Closed-loop Fiber Optic Gyroscope

  • Chong, Kyoung-Ho;Chong, Kil-To;Kim, Young-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.401-408
    • /
    • 2012
  • The amplitude error of phase modulator used in closed-loop fiber optic gyroscope has occurred by the temperature dependency of the electro-optic coefficient, and also can be due to the square-wave dither signal which is generally applied for eliminating the deadzone. This error can cause bias drift and scale factor error. This paper analyzes the temperature dependency of the modulation amplitude and the relationship with the scale factor of the gyroscope, and deals with an amplitude control method. The error calculation logic considering the dither signal is implemented on the signal processing module. The result of experiments from a prototype gyroscope shows the effect of the modulation amplitude control and a considerable improvement on performances.