• Title/Summary/Keyword: amplitude field

Search Result 638, Processing Time 0.03 seconds

Closed-Form Green's Function for the Analysis of Microstrip Structure (마이크로스트립 구조 해석을 위한 Closed-Form 그린 함수)

  • Yang, Seung-Woo;Kim, Sung-Jin;Kim, Gun-Woo;Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.281-293
    • /
    • 2008
  • In the layered medium, the Sommerfeld integral must be evaluated to calculate a space domain Green's function. The real axis integration method provides stable and accurate results over wide ranges of the observation distance and the singnal frequency. But this method has the in efficiency of approximation when the field point z is changed. Also, as the amplitude of z increases, the change of the spectral domain function is more rapidly. Therefore, the approximation is difficult when z becomes larger. In this paper, we propose a method to calculate an accurate closed-form Green's function for microstrip structure by using the closed-loop integration path.

Seismic properties of Gas Hydrate using Modeling Technique (모델링 기술을 이용한 심해 Gas Hydrate의 탄성파 특성 연구)

  • Shin, Sung-Ryul;Yeo, Eun-Min;Kim, Chan-Su;Kim, Young-Jun;Park, Keun-Pil;Lee, Ho-Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.156-157
    • /
    • 2005
  • Gas hydrate is ice-like crystalline lattice, formed at appropriate temperature and pressure, in which gas molecules are trapped. It is worldwide popular interesting subject as a potential energy. In korea, a seismic survey for gas hydrate have performed over the East sea by the KIGAM since 1997. In this paper, we had conducted numerical and physical modeling experiments for seismic properties on gas hydrate with field data which had been acquired over the East sea in 1998. We used a finite difference seismic method with staggered grid for 2-D elastic wave equation to generate synthetic seismograms from multi-channel surface seismic survey, OBC(Ocean Bottom Cable) and VSP(Vertical Seismic Profiling). We developed the seismic physical modeling system which is simulated in the deep sea conditions and acquired the physical model data to the various source-receiver geometry. We carried out seismic complex analysis with the obtained data. In numerical and physical modeling data, we observed the phase reversal phenomenon of reflection wave at interface between the gas hydrate and free gas. In seismic physical modeling, seismic properties of the modeling material agree with the seismic velocity estimated from the travel time of reflection events. We could easily find out AVO(Amplitude Versus Offset) in the reflection strength profile through seismic complex analysis.

  • PDF

Imaging of Ground Penetrating Radar Data Using 3-D Kirchhoff Migration (3차원 Kirchhoff 구조보정을 이용한 지표레이다자료의 영상화)

  • Cho, Dong-Ki;Suh, Jung-Hee;Choi, Yoon-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.185-192
    • /
    • 2002
  • We made a study of 3-D migration which could precisely image data of GPR (Ground Penetrating Radar) applied to NDT (Non-Destructive Test) field for the inspection of structural safety. In this study, we obtained 3-D migrated images of important targets in structuresurvey (e.g. steel pipes, cracks) by using 3-D Kirchhoff prestack depth migration scheme developed for seismic data processing. For a concrete model consisting of steel pipe and void, the targets have been well defined with opposite amplitude according to the parameters of the targets. And migrated images using Parallel-Broadside array (XX configuration) have shown higher resolution than those using Perpendicular-Broadside array (YY configuration) when steel pipes had different sizes. Therefore, it is required to analyze the migrated image of XX configuration as well as that of general YY configuration in order to get more accurate information. As the last stage, we chose a model including two steel pipes which cross each other. The upper pipe has been resolved clearly but the lower has been imaged bigger than the model size due to the high conductivity of the upper steel.

Numerical Method for Prediction of Air-pumping Noise by Car Tyre (자동차 타이어의 Air-Pumping소음 예측을 위한 수치적 기법)

  • Kim, Sungtae;Jeong, Wontae;Cheong, Cheolung;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.788-798
    • /
    • 2005
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a Piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory This paper describes an approach to predict the air-pumping noise of a car tyre with CFD/Kirchhoff integral method. The tyre groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired.'rhese unsteady flow data are used as a air-pumping source in the next CFD calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of simply modeled car tyre and through the predicted results, the influence of nonlinear effect on air-pumping noise propagation is investigated.

Acoustic Levitation and Rotation Produced by Ultrasonic Flexural Vibration (초음파 굽힘 진동에 의한 음향 부상 및 회전)

  • Loh, Byoung-Gook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.432-438
    • /
    • 2004
  • Acoustic levitation induced by ultrasonic flexural vibration at 28.4 KHz with a vibration amplitude of 10 micrometers is presented. Levitation of multiple objects along the length of the beam in a gap of 8.3 mm which is the half of acoustic wavelength is experimentally demonstrated. Analytical analysis predicts that levitated objects for the gap of half-the wavelength converges to the center of the gap, which is experimentally verified. It is observed that levitated objects with well-balanced mass distribution are set into rotation due to acoustic streaming. For cylinder-shaped Styrofoam with a diameter of 1.8 mm and a length of 3 mm, measured rotational velocity is 2400 revolution per minute. Applications of standing wave field levitation (SWFL) include manipulation of biological cells and blood constituents in biotechnology, and fine powder in material engineering.

Performance of pilot-based signal detection for digital IoT doorlock system (디지털 도어락 시스템을 위한 파일럿 기반 신호검출 성능)

  • Lee, Sun Yui;Hwang, Yu Min;Sun, Young Ghyu;Yoon, Sung Hoon;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.723-728
    • /
    • 2018
  • This paper proposes a signal detection method for IoT door lock system which is a new application field of VLC (Visible Light Communication). This paper describes the signal detection technique for user recognition that needs to be overcome in order to apply VLC to door lock system which has a demand for new technology due to security issue. This system has security and high signal detection characteristics because it uses existing infrastructure to communicate with visible light. In order to detect the signal using FFT, the signal of the user who accesses the authentication channel based on the pilot signal is detected, and the performance of the false alarm probability and detection probability is shown in the channel model.

A Study on DOA Estimation Using Dipole Array Antenna Based on MoM (MoM 기법에 의한 다이폴 배열 안테나의 신호 방향 추정 방법 연구)

  • Moon, Sang-Kon;Lee, Kang-In;Yang, Hoon-Gee;Bae, Kyung-Bin;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.661-668
    • /
    • 2011
  • Direction estimation of signal of interest has been an important issue in radar and communication system. Generally, DOA(Direction Of Arrival) methods have been researched in the field of signal processing with ideal array sensors. However, there are some problems in array antennas such as the input signal distortions in amplitude and phase, due to the mutual coupling between array elements. In this paper, we propose a new method of DOA estimation in the dipole array antenna by using the method of moment(MoM) to compensate the mutual coupling effects between array antenna elements. Also, the proposed method is applied to the estimation of azimuth(${\phi}$ ) and elevation(${\theta}$) angles using uniformly linear dipole array under noisy environments.

Development of the Multichannel Vibration Monitoring System (다채널 진동 모니터링 장치 개발)

  • Hong, Tae-Yong;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.671-676
    • /
    • 2016
  • This study is about design for the Rotational Instrument of the Industry factory which is used management safety and maintenance. We developed the multichannel vibration monitering system of the self-diagnosis for middle level CMS(Condition Monitoring System) market, and that system are new features to the expandability and flexibility. Normally one channel is used for treating one signal, but developed instrument can treat four channel with one signal processing card. One rack have redundant power supply and displace and it can check vibration measurement value in field without computer. Bearing fault detection is fundamental of vibration surveillance, but sometimes can not check with vibration velocity and acceleration. So it need the filtering and the amplitude modulation on the acceleration enveloping technology when irregular vibration is happened. We developed the vibration analysis instrument which is applied such technology. And the development prototype shows activated within the vibration error limit.

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.

A study on the sound transmission through double plates installed inside an impedance tube (임피던스 튜브 내에 설치된 이중 평판의 음파투과연구)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Seo, Yun-Ho;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.253-260
    • /
    • 2016
  • In this paper, derivation of the STL (Sound Transmission Loss) of the double plates installed in an impedance tube is discussed using an analytic method, where an air cavity exists between the plates. Vibration of the plates and sound pressure field inside the tube are expressed in terms of infinite series of modal functions. Under the plane wave assumption, it is shown that consideration of the first few modes yields sufficiently accurate results, and locations of peaks and dips are investigated. It is determined that the peak frequencies of the double plates coincide with those of each single plate. When the two plates are identical, the STL of the double plates as well as that of the single plate become zero at the natural frequencies of the single plate. The location and amplitude of the dips are investigated using an approximation solution when the cavity depth is very small.