• Title/Summary/Keyword: amphiphilic polymer networks

Search Result 2, Processing Time 0.016 seconds

A Study on Magnetic Properties of Amphiphilic Polymer Networks Nanocomposites by Mossbauer Spectroscopy (뫼스바우어 분광법에 의한 양친매성 고분자 망상구조 나노복합체의 자기적 성질 연구)

  • Yoon, In-Seop
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.216-221
    • /
    • 2010
  • Magnetic nanocomposites contained iron oxide were synthesized by through cross-linking polymerization of dimethylacetamide (DMAc) solution and toluen solution on the amphiphilic polymer networks based on urethan acrylate nonionomer (UAN) precursor chains. For the study on microscopic structures and magnetic properties of the magnetic nanoparticles, FESEM and XRD and Mossbauer spectroscopy were used. The results investigated show that there are magnetic nanoparticles of $Fe_2O_3$ in samples and the magnetic nanocomposites contained iron oxide in polymer networks of UAN using DMAc solution are more smaller than using toluen solution. All of the Fe ions in the samples present $Fe^{3+}$ and the magnetic property of samples are paramagnetic by superparamagnetic effect at room temperature.

Self-Assembly and Photopolymerization of Diacetylene Molecules on Surface of Magnetite Nanoparticles

  • Vinod, T.P.;Chang, Ji-Hoon;Kim, Jin-Kwon;Rhee, Seog-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.799-804
    • /
    • 2008
  • An amphiphilic diacetylene compound was deposited on the surface of nano sized magnetite particles ($Fe_3O_4$) using a self-assembly method. The diacetylene molecular assembly formed on the surface of nanoparticle was subjected to photopolymerization. This resulted in the formation of a polymeric assembly on the surface of the nanoparticles in which the adjacent diacetylene molecules were connected through conjugated covalent networks. The presence of immobilized polymer species on the surface of nanoparticles is expected to protect them from agglomeration and ripening, thereby stabilizing their physical properties. In this work, $Fe_3O_4$ nanoparticles were prepared by chemical coprecipitation method and the diacetylene molecule 10,12- pentacosadiynoic acid (PCDA) was anchored to the surface of $Fe_3O_4$ nanoparticles through its carboxylate head group. Irradiation of UV light on the nanoparticles containing immobilized diacetylenes resulted in the formation of a polymeric assembly. Presence of diacetylene molecules on the surface of nanoparticles was confirmed by X-ray photoelectron spectroscopy and FT-IR measurements. Photopolymerization of the diacetylene assembly was detected by UV-Visible spectroscopy. Magnetic properties of the nanoparticles coated with polymeric assembly were investigated with SQUID and magnetic hysteresis showed superparamagnetic behaviors. The results put forward a simple and effective method for achieving polymer coating on the surface of magnetic nanoparticle.