• Title/Summary/Keyword: amount of water

Search Result 7,117, Processing Time 0.032 seconds

Application of ANFIS for Prediction of Daily Water Supply (상수도 1일 급수량 예측을 위한 ANFIS적용)

  • Rhee, Kyoung-Hoon;Kang, Il-Hwan;Moon, Byoung-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.281-290
    • /
    • 2000
  • This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. ANFIS, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an application of network-based fuzzy inference system(ANFIS) for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water which supplied in Kwangju city. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supply, (b) the mean temperature, and (c) the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.46% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

  • PDF

Drinking Water Usage with Riverbed water and Groundwater

  • Kim, Il-Bae;Lee, Soo-Sik;Choi, Yun-Yeong;Suh, Jung-Ho;Lee, Hak-Sung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.151-154
    • /
    • 2003
  • With estmating drinking water demands of Ulsan city, the amount would be increased from 523,000ton/day in 2006 to 635,000 ton/day in 2016. Also, the dependence of Nakdong River on the Ulsan city as a source of drinking water will be very high up to 54.4% of total drinking water demands. Small-scale drinking water dam is no economical because of excessive construction cost and long construction period. However, development of riverbed and ground water of existing rivers is more economical than that of small-scale drinking water dam. In this study, to utilized Dongchun River as a drinking water resource, Modflow model was used to predict the amount of riverbed and ground water of Dongchun River basin. As a result, available amount of riverbed water was assumed in 6,000 ton/day by worst case (when perfect dry stream) and in case of ground water, it was assumed in 17,800 ton/day.

  • PDF

Estimation of water unit factor and water demand of educational institutions (학교 용수 원단위 산정 및 용수 사용량 추정 방법에 관한 연구)

  • Kim, Tae-young;Huh, Dong;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.481-489
    • /
    • 2009
  • The objective of this research is to provide more reliable and accurate unit factor of water amount by investigating of informations related to various educational institutions such as elementary, middle, high schools and university. In order to estimate the water demand of educational institutions, first of all, the informations such as building area, site area, total school population, and water amount of various educational institutions are investigated to estimate the water unit factor. In this research, we used the total population of students and teachers to estimate the water demand of educational institutions. The results of unit factors of this research are as follows: 1) The elementary school is $0.027983m^3/person{\cdot}day$, 2) middle school: $0.024106m^3/person{\cdot}day$, 3) high school: $0.041415m^3/person{\cdot}day$, 4) specialized high school (science high school and foreign language high school): $0.156938m^3/person{\cdot}day$ and 5) university: $0.033766m^3/person{\cdot}day$. Finally, these water amounts calculated by unit factors were compared with real water amount of educational institutions.

Changes in Drug Elution Concentration and Physical Characteristics of Soft Contact Lenses Depending on the Initiator and Crosslinker (개시제와 교차결합제 농도의 변화에 따른 소프트콘택트렌즈의 물리적 성질과 약물용출 농도의 변화)

  • Park, Hyun-Ju;Lee, Hyun Mee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • Purpose: The material properties of contact lenses were measured by varying the amounts of an initiator and a cross-linking agent that are the basis for the manufacture of contact lenses, and the drug delivery effects depending on the material properties of contact lenses were compared. Methods: Contact lens samples were manufactured using HEMA by varying the concentration of the cross-linking agent and the initiator. To investigate the changes in physical characteristics depending on the material properties, the results of the experiments on the amount of drug elution, water content, refractive index, and the amount of protein adsorption were compared. Results: For the contact lenses manufactured by varying the amount of the initiator, the water content hardly changed, and the refractive index also hardly changed. The amount of drug elution was not much affected by the changes in the initiator, but the amount of elution increased as the water content increased. The amount of protein adsorption was hardly affected by the changes in the initiator, but the amount of adsorption increased as the water content decreased. Conclusions: The changes in the properties were hardly affected by the changes in the amount of the initiator, but were significantly affected by the changes in the amount of the cross-linking agent. As the amount of the cross-linking agent increased, the water content decreased, while the refractive index increased. Also, when the water content increased, the amount of drug elution increased, while the amount of protein adsorption decreased.

A Study on the Determination of Water Storage-Supply Capacity of Agricultural Reservoir (소규모 농업용 저수지의 저류량-용수공급능력 결정에 관한 연구)

  • 안승섭;정순돌;이증석;윤경덕;장인수
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1217-1226
    • /
    • 2002
  • This study aims at the effective estimation of water supply capacity of small scale reservoir and the proposal of the data which is necessary to establish the water resources management plan of down stream area of the reservoir in the future by comparison and examination about reservoir operation technique for the security of agricultural water in small scale reservoir. The result of flow calculation by Tank model is used for the input data as the inflow data which is needed for the analysis of water supply capacity. Stochastic method, simulation method, and optimization method are used to examine the water supply capacity, and water security amount is compared with each method. From the analyses of water supply capacities by each method, slightly different results are shown in spite of the effort to compare them equally using input data such as inflow data under equal conditions, and the comparison of water supply capacities by each method are as follows; linear planning method, simulation method, and transition probability matrix method in the order of amount from the largest. It is thought that the simulation method in which comparatively reasonable application of the inflow data is possible and is simulated in successive time series dam operation of the three methods used in this study thus, simulation model is proper to estimate the water supply capacity of agricultural small scale reservoir. And it is judged that the heightening of efficiency of water resources utilization according to the development of downstream area of dam may be possible using the upward readjusted water supply amount of $55.18{\tiems}10^6ton$ and $63.7{\times}10^6ton$ at 95% and 90% supply reliability respectively which are above the planning water supply amount of $50.0{\times}10^6$ton when the simulation method is introduced as the standard.

Study on Selection of Water Treatment Filtration System to Cope with Climate Change (기후변화 대응을 위한 수처리 여과시스템 선정 방안 연구)

  • Hwang, Yun-Bin;Park, Ki-Hak
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.75-80
    • /
    • 2018
  • The problem of water shortages and water related disasters caused by climate change has increased the seriousness of water problems and the importance of water treatment technology capable of securing clean water is expanding. In this study, we analyzed not only the water pollutant generated by the filtration system technology of various water treatment technologies but also the indirect greenhouse gas emissions generation, and analyzed the influence on the environment. The subjects of study are Fabric Filter, Reverse Osmosis System and Pressurized Microfiltration Device which are widely used for water treatment and we analyzed the impact on the environment using the Life Cycle Assessment (LCA) method using the electricity amount necessary for use, the water purification efficiency, the throughput per ton and the cost. The amount of greenhouse gas generated when the Pressurized Microfiltration Device operates for 1 year is $2.15E+04kg\;CO_2-eq$., Fabric Filter is $3.29E+04kg\;CO_2-eq$., and Reverse Osmosis System is $1.68E+05kg\;CO_2-eq$. As a result of analyzing the amount of greenhouse gas generated at the time of purifying 1 ton of the Pressurized Microfiltration Device and the conventional filtration system, the Pressurized Microfiltration Device was $20.5g\;CO_2-eq$., Fabric Filter was $34.7g\;CO_2-eq$., and Reverse Osmosis System was $191.7g\;CO_2-eq$. The amount of greenhouse gas generated was calculated to be 41.0% less than that of the Fabric Filter by the Pressurized Microfiltration Device and 89.3% less than the Reverse Osmosis System. From the viewpoint of climate change, it is necessary to select a filtration system that takes climate change into account, not from the viewpoint of water quality removal efficiency and economic efficiency according to future water treatment applications, and it is necessary to select a water treatment filtration system more researches and improvements will be made for.

Characteristics of Allochthonous Organic Matter in Large Dam Reservoir, Lake Soyang (소양호에서 외부기원유기물의 유입, 유출 특성)

  • Park, Hae-Kyung;Kwon, Oh-youn;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.88-97
    • /
    • 2011
  • To identify the inflow and outflow characteristics of allchthonous organic matters and examine the change of allochthonous organic matter load pattern due to the climate change, we investigated the temporal variations of DOC and POC concentrations within inflow water and dam discharge water and spatio-temporal distribution of POM within the lake water in Lake Soyang which is the largest dam reservoir in Korea in 2006. Most of allochthonous DOC flowed into the lake water during initial rain and was not affected by the amount of precipitation, whereas most of allochthonous POC flowed into during concentrated heavy rain and the concentration of POC was significantly associated with the amount of inflow water and precipitation. Calculated annual allochthonous organic matter loads in Lake Soyang from 2003 to 2006 using the regression equation between the amount of inflow water and the concentration of POC indicate allochthonous organic matter loads are mainly affected by total influx and extreme influx of inflow water. The spatio-temporal distribution of POM indicated allochthonous organic matter of inflow river during flood period in July transported from upper part to middle and lower part of the lake a month later respectively along the middle layer of water column in Lake Soyang.

Establishing the Models for Optimized Design of Water Injection in Boilers with Waste-heat-recovery System (가습연소 폐열회수 보일러의 물분사 설계모델 구축에 관한 연구)

  • Shin, Jaehun;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2021
  • In order to improve the overall efficiency and meet the emission regulations of boiler systems, the heat exchanging methods between inlet air and exhaust gas have been used in boiler systems, named as the waste-heat-recovery condensing boiler. Recently, to further improve the overall efficiency and to reduce the NOx emission simultaneously, the concept of the water injection into the inlet air is introduced. This study suggests the models for the optimized design parameters of water injection for waste-heat-recovery condensing boilers and performs the analysis regarding the water injection amount and droplet sizes for the optimized water injection. At first, the required amount of the water injection was estimated based on the 1st law of thermodynamics under the assumption of complete evaporation of the injected water. The result showed that the higher the inlet air and exhaust gas temperature into the heat exchanger, the larger the amount of injected water is needed. Then two droplet evaporation models were proposed to analyze the required droplet size of water injection for full evaporation of injected water: one is the evaporation model of droplet in the inlet air and the other is that on the wall of heat exchanger. Based on the results of two models, the maximum allowable droplet sizes of water injection were estimated in various boiler operating conditions with respect to the residence time of the inlet air in the heat exchanger.

Study on the Factor of Water Retention Capacity of Cement Mortar by Hydroxyalkyl Methylcellulose Ether (히드록시알킬 메틸셀룰로오스가 시멘트 모르타르의 보수성에 미치는 영향에 관한 연구)

  • 이무진
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.153-160
    • /
    • 1999
  • Water soluble hydroxyalkyl methycellulose ethers are used in a variety of applications incluing building industry as a supplementary agent used for incresing adhesives, water retention capacity, workability and viscosity modify. Water retention capacity(WRC) is the capability to contain water in the ploymer chain under condition of being mixed with cement. In general, the WRC is affected by the viscosity, the adding amount, the particle size, the rate of dissolving and the amount of substituted chemical in cellulose ethers. In the other words, WRC is increased as higher the viscosity, more adding amount, finer the particle size and longer the dissolving time of cellulose ethers. This thesis investigated each factor that effect the WRC, particularly the relation between degree of substitution(DS), molar of substitution(MS) and WRC. It is observed that WRC is not nearly affected by DS of cellulose ethers, but is changes proportionally as MS increases in the narrow range(0.10~2.25)

Water Resources Utilization Pattern of JangSung Reservoir (장성호 수자원 이용 패턴)

  • Yoon, Kwang-Sik;Han, Kuk-Heon;Yoon, Suk-Gun;Jung, Jae-Woon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.291-294
    • /
    • 2003
  • The Water resources utilization pattern of Jangsung reservoir was studied. The observed precipitation and existing reservoir operation data such as irrigation amount, reservoir storage, river maintenance requirement, flood control discharge were collected for ten years period and analyzed. Major findings of this study are as follows: The observed average, minimum, maximum annual precipitation were 905.1mm, 1,977.3mm, 1,554.3mm during study period, respectively. The average annual irrigation amount was 554.5mm, irrigation amount of drought years of '92 and '94 was 604.6mm, 679.2mm, respectively. However, irrigation amount of extended drought year '95 was 384.9mm. It showed that supplying capacity of Jangsung reservoir was limited when consecutive 2 year drought occurred. The main water resources usage of Jangsung reservoir was irrigation, but flood control discharge exceed irrigation amount exceptionally when high precipitation occurred. The reservoir operation record revealed that discharge for river maintenance was delivered even drought years.

  • PDF