• 제목/요약/키워드: amorphous and crystalline

검색결과 782건 처리시간 0.031초

Electrical Characteristics of $(Ba,Sr)TiO_3/RuO_2$ Thin films

  • Park Chi-Sun
    • 마이크로전자및패키징학회지
    • /
    • 제11권3호
    • /
    • pp.63-70
    • /
    • 2004
  • The structural, electrical properties of $(Ba, Sr)TiO_3[BSTO]/RuO_2$ thin films were examined by the addition of amorphous BSTO layer between crystlline BSTO film and $RuO_2$ substrate. We prepared BSTO films with double-layered structure, that is, amorphous layers deposited at $60^{\circ}C$ and crystalline films. Crystalline films were prepared at 550 on amorphous BSTO layer. The thickness of the amorphous layers was varied from 0 to 170 nm. During the deposition of crystalline films, the crystallization of the amorphous layers occurred and the structure was changed to circular while crystalline BSTO films showed columnar structure. Due to insufficient annealing effect, amorphous BSTO phase was observed when the thickness of the amorphous layers exceeded 30 nm. Amorphous BSTO layer could also prevent the formation of oxygen deficient region in $RuO_2$ surface. Leakage current of total BSTO films decreased with increasing amorphous layer thickness due to structural modifications. Dielectric constant showed maxi-mum value of 343 when amorphous layer thickness was 30 nm at which the improvement by grain growth and the degradation by amorphous phase were balanced.

  • PDF

Crystallization Behavior of Al-Ni-Y Amorphous Alloys

  • Na, Min Young;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • 제43권3호
    • /
    • pp.127-131
    • /
    • 2013
  • The crystallization behavior in the $Al_{87}Ni_3Y_{10}$ and $Al_{88}Ni_3Y_9$amorphous alloys has been investigated. As-quenched $Al_{87}Ni_3Y_{10}$ amorphous phase decomposes by simultaneous formation of Al and intermetallic phase at the first crystallization step, while as-quenched $Al_{88}Ni_3Y_9$ amorphous phase decomposes by forming Al nanocrystals in the amorphous matrix. The density of Al nanocrystals is extremely high and the size distribution is homogeneous. Such a microstructure can result from rapid explosion of the nucleation event in the amorphous matrix or growth of the preexisting nuclei embedded in the as-quenched amorphous matrix. The final equilibrium crystalline phases and their distribution at 873 K are exactly same in both $Al_{87}Ni_3Y_{10}$ and $Al_{88}Ni_3Y_9$ alloys.

ICOSAHEDRAL CLUSTERS AND MAGNETIC PROPERTIES OF $LaCo_{13}$ AMORPHOUS AND CRYSTALLINE ALLOYS

  • Fukamichi, K.;Fujita, A.;Ohashi, N.;Hashimoto, M.;Matsubara, E.;Waseda, Y.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.767-771
    • /
    • 1995
  • The atomic structure and magnetic properties of $LaCo_{13}$ amorphous alloy have been investigated and compared with those of its crystalline counterpart. It has been confirmed that the amorphous alloy is composed of the icosahedral clusters with a $NaZn_{13}$-type structure. The magnetic moment and the spin- wave stiffness constant obtained from the magnetic measurements in the amorphous state are larger than those in the crystalline state. The Curie temperature estimated from the reduced magnetization curve for the former is much higher than the value for the latter. The localized magnetic moment character in the amorphous state is stronger than that in the crystalline state.

  • PDF

Formation of Amorphous Oxide Layer on the Crystalline Al-Ni-Y Alloy

  • Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • 제43권4호
    • /
    • pp.173-176
    • /
    • 2013
  • The oxidation behavior of the crystallized $Al_{87}Ni_3Y_{10}$ alloy has been investigated with an aim to compare with that of the amorphous $Al_{87}Ni_3Y_{10}$ alloy. The oxidation at 873 K occurs as follows: (1) growth of an amorphous aluminum-yttrium oxide layer (~10 nm) after heating up to 873 K; and (2) formation of $YAlO_3$ crystalline oxide (~220 nm) after annealing for 30 hours at 873 K. Such an overall oxidation step indicates that the oxidation behavior in the crystallized $Al_{87}Ni_3Y_{10}$ alloy occurs in the same way as in the amorphous $Al_{87}Ni_3Y_{10}$ alloy. The simultaneous presence of aluminum and yttrium in the oxide layer significantly enhances the thermal stability of the amorphous structure in the oxide phase. Since the structure of aluminum-yttrium oxide is dense due to the large difference in ionic radius between aluminum and yttrium ions, the diffusion of oxygen ion through the amorphous oxide layer is limited thus stabilizing the amorphous structure of the oxide phase.

결정성 수지의 발포특성 (The Foaming Characteristics of Microcellular Processing with Polypropylene in Semicrystalline States)

  • 이보형;차성운;윤재동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1828-1833
    • /
    • 2003
  • In a foaming process of microcellular plastics (MCPs) with a batch process, amorphous plastics and crystalline plastics have different characteristics for a foaming temperature. It is known that a foaming of amorphous plastics occurs at the temperature above a glass transition temperature, however, it is discovered that crystalline plastics do not take place above a glass transition temperature without exception, and even though the foaming occurs, it does not in all the range. In this research, to measure foaming temperature of crystalline polymer, a foaming experiment was performed using one of the typical crystalline polymer, polypropylene. To analyze whether the foaming occurs both at amorphous and crystalline fields, SEM was applied

  • PDF

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • 제44권3호
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.

동기지 동계 Bulk Amorphous 복합재의 압축 변형거동 (Deformation behavior in Cu-based bulk amorphous alloys composite during compression)

  • 이창호;김지수;박은수;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.203-206
    • /
    • 2004
  • Copper-based bulk amorphous alloy composite was synthesized by using the copper-coated $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ amorphous powder which was obtained by argon gas atomization. The amorphous powder having a super-cooled liquid region of 53 K was coated by crystalline copper by electroless coating. The consolidation was carried out by manufacturing performs and by the subsequent warm extrusion at 743 K. During the compression test at the room temperature, the composite containing a large fraction of crystalline copper displayed a larger plastic strain after yielding. FEM simulation revealed change in fracture modes in the composites depending on the amount of crystalline copper in the composites.

  • PDF

Effect of Ag on microstructural behaviour of Nanocrystalline $Fe_{87-x}Zr_7B_6Ag_x$($0{\leq}x_{Ag}{\leq}4$) Magnetic Thin Films Materials

  • 이원재;민복기;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 초전도 자성체
    • /
    • pp.3-6
    • /
    • 2002
  • Effect of Ag additive element on microstructure of $Fe_{87-x}Zr_7B_6Ag_x$, magnetic thin films on Si(001) substrates has been investigated using Transmission Electron Microscopy(TEM) and X-ray Diffraction(XRD). All samples with additive Ag element were made by DC-sputtering and subjected to annealing treatments of $300^{\circ}C{\siim}600^{\circ}C$ for 1 hr. TEM and XRD showed that perfectly amorphous state in Ag-free Fe-based films was observed in as-deposited condition. The as-deposited Fe-based films with the presence of Ag constituent have a mixture of Fe-based amorphous and nano-sized Ag crystalline phases. In this case, additive element, Ag was soluted into Fe-based matrix. With the increase in additive element, Ag, insoluble nano-crystalline Ag particles were dispersed in the Fe-based amorphous matrix. Crystallization of Fe-based amorphous phase in the matrix of $Fe_{82}Zr_7B_6Ag_5$ thin films occurred at an annealing temperature of $400^{\circ}C$. Upon annealing, the amorphous-Ag crystalline state of Fe-Zr-B-Ag films was transformed into the mixture of Ag crystalline phase + Fe-based amorphous phase + ${\alpha}$-Fe cluster followed by the crystallization process of ${\alpha}$-Fe nanocrystalline + Ag crystalline phases.

  • PDF

비결정성 세푸록심 악세틸 고체분산체의 제조 및 평가 (Preparation and Evaluation of Non-Crystalline Cefuroxime Axetil Solid Dispersion)

  • 우종수;장희철;이창현
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권2호
    • /
    • pp.73-80
    • /
    • 2002
  • Cefuroxime axetil is a cephalosporin antibiotic having a high activity against a wide spectrum of Grampositive and Gram-negative microorganisms. It is a cephalosporin antibiotic which exist as 2 diastereoisomers: diastereoisomer A and B. It shows polymorphism of three forms: a crystalline form having a melting point of about $180^{\circ}C$, a substantially amorphous form having a high melting point of about $135^{\circ}C$ and a substantially amorphous form having a low melting point of about 70^{\circ}C$. The crystalline form of cefuroxime axetil is slightly soluble in water because diastereoisomer A has lower solubility than B in water. Substantially amorphous form of which there are no difference in solubility between diastereoisomer A and B has better solubility than crystalline form, but it forms a thicker gel than crystalline form upon contact with an aqueous medium. Based on this reason, cefuroxime axetil is not readily absorbable in the gastrointestinal tract, rendering its bioavailability on oral administration very low. The object of this study was to develop an improved non-crystalline cefuroxime axetil composition having a high physicochemical stability and bioavailability. A non-crystalline cefuroxime axetil solid dispersant showing no peak on a Differential Scanning Calorimetry (DSC) scan is prepared by dissolving cefuroxime axetil and a surfactant in an organic solvent; suspending a water-insoluble inorganic carrier in the resulting solution; and spray drying the resulting suspension to remove the organic solvent, said solid dispersant having an enhanced dissolution and stability of cefuroxime axetil and being useful for the preparation of a pharmaceutical composition for oral administration. Tablet was formulated with this cefuroxime axetil solid dispersant, disintegrants and other ingredients. It disintegrated and dissolved easily and dynamically in dissolution medium, so showed a good dissolution profile.

고강도 Fe계 합금의 고온 변형 특성 (High Temperature Deformation Behavior of Fe-base High Strength Alloys)

  • 권운현;최일동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.938-946
    • /
    • 2008
  • Fe-base amorphous alloy and two crystalline phases composite were fabricated. The effect of temperature and strain rate on mechanical properties was evaluated utilizing compression test. Mixture of non-crystalline and crystalline phases were found using X-ray diffraction (XRD) and differential thermal analysis (DTA) tests. Based on glass transition temperature and crystallization temperature. compression tests were performed in the temperature ranging from $560^{\circ}C$ to $700^{\circ}C$ with $20^{\circ}C$ interval. Relationship between microstructure, including fracture surface morphology, and mechanical behavior was studied. The peak stress of Fe-base amorphous alloy was over 2GPa and expected to have a good wear resistance, but it is expected hard to deform because of low ductility. The peak stress and elongation of two crystalline phases composite was over 1GPa and about 20%, therefore it is possible to deform high strength wear resistant materials such as engine valve.