• Title/Summary/Keyword: ammonia removal,

Search Result 563, Processing Time 0.024 seconds

Removal Efficiency of Ammonia and Toluene using Mobile Scrubber (이동형 스크러버를 이용한 암모니아 및 톨루엔의 제거 효율)

  • Kim, Jae-Young;Kim, Jang-Yoon;Lee, Yeon Hee;Kim, Min Sun;Kim, Min-Su;Kim, Hyun Ji;Ryu, Tae In;Jeong, Jae Hyeong;Hwang, Seung-Ryul;Kim, Kyun;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2018
  • BACKGROUND: The mobile vortex wet scrubber was developed to remove the harmful chemicals from accidental releases. However, there was a disadvantage that it was limitedly used for volatile organic compounds (VOCs) such as toluene according to the physicochemical properties. This study compared the removal efficiencies of an improved mobile scrubber on toluene and ammonia by applying diverse adsorption and absorption methods. METHODS AND RESULTS: The removal efficiencies on harmful chemicals were examined using various adsorption and absorption methods of water vortex process (C), phosphoric acid-impregnated activated carbon adsorption (PCA), pH-controlled water (pH 2.5) vortex process absorption with sulfuric acid (SWA) after ammonia exposure, granular activated carbon adsorption (GCA), and activated carbon mat adsorption (CMA) after toluene exposure. As a result, the best removal efficiency was shown in the SWA for ammonia and GCA for toluene. Also, the SWA and GCA methods were compared with different concentration levels. In the case of ammonia exposure (5, 10 and 25%), there was no difference by concentration levels, and the concentration in the outlet gradually increased, with pH change from acid to base. In the case of toluene exposure (50, 75 and 100%), the outlet concentration was higher relative to the exposure concentration in the initial 10 min, but the outlet concentration was remained steady after 10 min. CONCLUSION: The newly improved mobile scrubber was also effective in removing VOCs through adsorption techniques (activated carbon, activated carbon fiber, carbon mat filter etc.), as well as removing acid-base harmful chemicals by neutralization reaction.

The Ammonia Removal Capacity of a Few Kinds of Filter Media in a Water Reuse quaculture System (순환 여과식 양식 시설에 이용될 수종의 여과 재료의 효능에 관한 연구)

  • KIM In-Bae;KIM Pyong-Kih;CHEE Young-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.561-567
    • /
    • 1987
  • The purpose of this study was to find out the removal capacity of harmful ammonia by different filter media in the submerged biological filters in a given space of chamber. Four materials, pile cloth, corrugated skylight roofing plate, embossed plastic plate, and gravel, were used as the experimental filter media. Each filter medium was placed in two aquariums, each aquarium measuring $90cm\times60cm\times60cm\;(depth)$. Under the normal operating condition, the average of mean ammonia removal rates during the first and second functioning periods by each filter material which occupied tile space in the filter chamber (aquarium) was as follows: 1. Pile cloth: $8.381\;g{\cdot}m^{-3}.\;day^{-1}$ 2. Corrugated skylight roofing plate: $7.834\;g{\cdot}m^{-3}.\;day^{-1}$ 3. Embossed plastic plate: $7.797\;g{\cdot}m^{-3}.\;day^{-1}$ 4. Gravel: $7.051\;g{\cdot}m^{-3}.\;day^{-1}$ Thus, there were no significant differences between the media, but at the time of practical application of these materials, some other factors such as investment cost, easiness for the removal of excess detritus accumulated in tile interstices of filter media, etc. should be fallen into consideration. When large units are required, in particular, removal of excess detritus from tile gravel bed is extremely difficult, and in case of pile cloth filters the installation work is much complicated and a problem in supporting the structure when drained also exists. In these respects, corrugated skylight roofing plate and embossed plastic plate seem to be more optimal, but again in practice the local situation for the availability and the price of the materials should be rechecked and the fitness of tile materials in the particular filter chambers under use or under consideration for construction must be taken into account.

  • PDF

Synthesis of Iron-loaded Zeolites for Removal of Ammonium and Phosphate from Aqueous Solutions

  • Kim, Kwang Soo;Park, Jung O;Nam, Sang Chul
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.267-276
    • /
    • 2013
  • This study presents a comparison of different protocols for the synthesis of iron-loaded zeolites, and the results of their application, as well as that of zeolite-A (Z-A), to the removal of ammonium and phosphate from aqueous media. Zeolites prepared by three methods were evaluated: iron-incorporated zeolites (IIZ), iron-exchanged zeolites (IEZ), and iron-calcined zeolites (ICZ). The optimal iron content for preparing of IIZ, as determined via scanning electron microscopy and X-ray photoelectron spectroscopy analyses, expressed as molar ratio of $SiO_2:Al_2O_3:Fe$, was below 0.05. Ammonia removal revealed that the iron-loaded zeolites have a higher removal capacity than that of Z-A due, not only to ion-exchange phenomena, but also via adsorption. Greater phosphate removal was achieved with IEZ than with ICZ; additionally, no sludge production was observed in this heterogeneous reaction, even though the coagulation process is generally accompanied by the production of a large amount of undesired chemical sludge. This study demonstrates that the developed synthetic iron-loaded zeolites can be applied as a heterogeneous nutrient-removal materials with no sludge production.

Estimation of Nitrifiable Nitrogen Compounds in Municipal Wastewater by Respirometry (호흡률법에 의한 하수의 질산화성 질소화합물 추정)

  • Kim, Dong Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.295-303
    • /
    • 2007
  • Nitrogen compounds in municipal wastewater can be divided into biodegradable and nonbiodegradable fractions with biodegradability. Biodegradable nitrogen compounds can be removed through biological nitrification and denitrification processes, and nonbiodegradable nitrogen compounds affect the effluent quality of biological nutrient removal processes. The amount of nitrifiable nitrogen compounds, which are the sum of ammonia and biodegradable organic nitrogen, has been estimated by respirometry. Respirometry shows good estimation of the concentration of nitrifiable nitrogen when a synthetic sample of ammonium chloride is dosed. The estimated concentration of nitrifiable nitrogen compounds in municipal wastewater is close to ammonia concentration in municipal wastewater, but it is lower than that for the synthetic sample. If nitrogen assimilated into cell synthesis of nitrifiers and heterotrophs is considered, the total amounts of nitrifiable nitrogen compounds, which are nitrified and assimilated, could be more accurately estimated. The concentration of nitrifiable nitrogen compounds, which are biodegradable, is about 31 mg N/l, and this is 119% of ammonia and 94% of total nitrogen. Ammonia, nitrate, biodegradable organic nitrogen, and nonbiodegradable nitrogen are about 79%, 1%, 15%, and 5% of the total nitrogen in municipal wastewater, respectively.

Evaluation of Improvement on Sediment for Practical Application in Prawn Farm (새우 양식장에 적용을 위한 저질개선 평가)

  • Kim Woo-Hang;Kim Doo Hee
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.81-84
    • /
    • 2004
  • Control of Sediment is very important in prawn farm due to the eruption of toxic material such as W1ionized H2S, NH3 and NO2-. In this study, column test study, column with filter media such as activated carbon, zeolite, oyster shell and iron chloride to evaluate the reduction of toxicity from sediment ammonia-N(NH3) was effectively removed by Zeolite and oyster shell. It was indicated that ammonium ion(NH4+) was removed by ion exchange of zeolite. And the ammonia in the column of oyster shell was existed as the form of NH4+, which is not toxic for prawn because oyster shell was stably kept around pH 8. Therefore, some of ammonia(NH3) was reduced by oyster shell. Hydrogen sulfide and COD were effectively removed by adsorption of activated carbon and a partial removal of hydrogen sulfide was accomplished by Oyster shell. Phosphorous was removed by activated carbon, oyster shell and iron chloride. In prawn farm, the concentration of ammonia was increased with increase of pH by algae photosynthesis in the column of activated carbon, zeolite and iron chloride, but it was revealed that pH was stably kept in the column of oyster shell.

  • PDF

Biofiltration of Ammonia Gas from Composting Using Sawdust as Biofilter Media (퇴비화 암모니아 가스의 톱밥 바이오 필터 매체에 의한 생물학적 탈취)

  • Hong Ji Hyung;Park Keum Joo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • Dairy manure amended with crop and forest residues (moisture 69% wet basis, C/N 22) was composted in a 605 L pilot-scale vessel using continuous air flow (56 L/min) for 19 days. Three pilot-scale sawdust biofilters (moisture 63%, pH 5.0) were built to clean biological waste gas from the composting process. For each methods, two replicated experiments were monitored over a period of three weeks. The system was evaluated to determine the biofilter media depth that would be adequate for compost odour reduction. The compost air cleaning was measured based on ammonia gas concentration before and after passing through the biofilter. Ammonia gas removal efficiency over 3 weeks was 42, 75 and 87% at sawdust biofilter media depth levels of 202, 400 and 600 mm, respectively. Each sawdust biofilter was operated at a moisture content in the range of 60~62% (wb), a temperature from 15 to $25^{\circ}C$, an average pressure drop from 240 to 340 Pa and a detention time from 60 to 180 seconds during the biofiltration process.

Evaluation of Nitritation of High Strength Ammonia with Variation of SRT and Temperature using Piggery Wastewater (SRT와 온도 변화를 통한 돈사폐수 내 고농도 암모니아의 아질산화 평가)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.563-571
    • /
    • 2011
  • The purpose of this study is to investigate the high strength ammonia oxidation of piggery wastewater. Laboratory scale reactors was operated using influent of piggery wastewater and effluent of anaerobic digester from piggery wastewater at $35^{\circ}C$ and $20^{\circ}C$. Results of various operating conditions were compared and analyzed. After analyzing the results, effluent of anaerobic digester from piggery wastewater required shorter Solid retention time (SRT) than influent of piggery wastewater. In terms of the temperature, stable ammonia removal and denitrification was achieved on the both of the condition. At the temperature of $35^{\circ}C$, nitrite conversion rate was better than $20^{\circ}C$. It can be concluded that treating the piggery wastewater using anaerobic digester on the condition of the temperature at $35^{\circ}C$ is more efficient on the nitritation of the piggery wastewater.

고정화 질화세균을 이용한 저농도 암모니아의 고도처리 (I) 공기 유입량과 수력학적 체류시간의 영향

  • Lee, Jeong-Hun;Kim, Byeong-Jin;Lee, Min-Su;Na, In-Geol;Seo, Geun-Hak
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.343-345
    • /
    • 2002
  • This study was performed by the airlift bioreactor using the nitrifier consortium entrapped in polyvinyl alcohol(PVA) for removing low concentration total ammonia nitrogen(TAN). At the aeration rate of 1.5 vvm, TAN removal rate and removal efficiency was 316.6${\pm}$7.2 $g/m^3$ day and 92.8${\pm}$2.2%. Removal rate was continuously increased with decreasing from 0.5hr to 0.05hr of hydraulic residence time(HRT), whereas removal efficiency was decreased with decreasing HRT.

  • PDF

Effects of Artificial Filaments Equipped in the Aeration Tank of Aerobic Fermentation System on the Removal Efficiency of Nitrogen of Swine Wastewater Containing High Nitrogen (담체설치가 고질소함유 양돈폐수의 호기발효에 미치는 영향)

  • 손경호;이상락;안정제;권윤정;정태영
    • Journal of Animal Environmental Science
    • /
    • v.6 no.2
    • /
    • pp.65-72
    • /
    • 2000
  • This study was conducted to investigate the effects of artificial filaments equipped in the aeration tank of aerobic·fermentation system on the removal efficiency of swine wastes which were fermented an aerobically and thus containing high nitrogen. Two aerobic fermentation system each consist4s of 4 tanks ; storage tank, 1st and 2nd aeration tank and settling tank were run before and one or three weeks after equipment of artificial filament in the aeration tanks. Total solids concentration tended to increase by aerobic fermentation in all running periods. However, decreased(P<0.05) total nitrogen concentration was shown three weeks after the equipment of artificial filament. Ammonia nitrogen concentration also largely decreased(p<0.05) in both running periods of one and three weeks after equipment of artificial filaments. These results suggest that the artificial filaments may improve the removal efficiency of nitrogen in swine wastewater containing high nitrogen during aerobic fermentation.

  • PDF

Community Analysis of Nitrite-Oxidizing Bacteria in Lab-Scale Wastewater Treatment System (폐수처리장치에서의 아질산염 산화 세균 군집 분석)

  • Jeong, Soon-Jae;Lee, Sang-Ill;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • Nitrogen is one of the major pollutants that should be removed by wastewater treatment systems. Biological nitrogen removal (BNR) is a key technology in advanced wastewater treatment systems operated by bacterial populations. Nitrification is the first step of microbiological processes in BNR system. Ammonia is oxidized to nitrite by ammonia-oxidizing bacteria (AOB) and then nitrite is subsequently oxidized to nitrate by nitrite-oxidizing bacteria (NOB). The diversity of NOB in nitrification reactors of 3 BNR systems, Edited biological aerated filter system, Nutrient removal laboratory system, and the Rumination type sequencing batch reactor system, was investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Cluster analysis of T-RF profiles showed that communities of Nitrobacter group in each system were different depending upon the process of systems. However, the clusters of Nitrospira group were divided by the habitat of aqueous and solid samples.