• 제목/요약/키워드: ammonia gas

검색결과 722건 처리시간 0.027초

상업용 퇴비화를 위한 간헐통기식 파이로트 규모 반응조의 성능 (Performance of an Intermittent Aerated Pilot-scale Reactor Vessel for Commercial Composting)

  • 홍지형
    • 유기물자원화
    • /
    • 제6권2호
    • /
    • pp.31-44
    • /
    • 1998
  • 돈분 슬러리와 톱밥 혼합물을 퇴비화 급속(분해)과정의 파이로트 규모 반응조 성능 평가를 입증하기 위해 간헐통기법으로 퇴비화 처리했다. 계측은 퇴비온도, 산소와 탄산가스농도, 통기량 및 암모니아가스 배출 등의 측정으로 구성됐다. 퇴비화 급속과정의 암모니아 농도는 14일째에 수준이하(I)보다 최적수준(II)부근에서 신속하게 허용범위 34-40ppm 이내로 감소되어 짐을 알 수 있었다. 암모니아가스 저감에 있어서 수분(55-65%), 탄질비(20-40%), 수소이온농도(7-8%) 및 퇴비온도(<$60^{\circ}C$) 등의 최적수준 영향은 상업용 퇴비화에 무시 할 수 없었다.

  • PDF

견운모와 규조토에 대한 암모니아 기체의 흡착특성 (Adsorption characteristics of the sericite and diatomite for ammonia gas)

  • 이수승;김진수;윤창연;이종협
    • 청정기술
    • /
    • 제12권3호
    • /
    • pp.175-181
    • /
    • 2006
  • 실내 공기오염 방지를 위하여 견운모와 규조토를 건축내장재로 사용하기 위한 물리 화학적 특성을 조사 하였다. 특히 규조토의 경우 주사전자현미경(Scanning Electron Microscope: SEM)으로 표면에 분포하는 규조화석의 존재를 확인하였으며, 질소흡탈착법(Brunauer-Emmett-Teller (BET) method)을 통해 5 nm 이하의 기공이 고르게 분포하고 비교적 넓은 비표면적을 가지는 것을 알 수 있었다. 이러한 규조토와 비교하여 견운모는 기공특성이 보이지 않았으며 비표면적 역시 상대적으로 작은 것으로 나타났다. 따라서, 다공질 구조와 넓은 비표면적으로 인해 규조토가 견운모보다 상대적으로 높은 흡착특성을 가지고 있음을 예상 하였으며, 이를 실험적으로 확인 하였다. 하지만 $950^{\circ}C$이상으로 열처리한 결과 규조토는 다공질 규조화석의 연소 및 무기성분의 고온소결로 인해 더 이상 기공 구조를 보이지 않고 비표면적이 감소하였으며, 그 결과 흡착성능 또한 감소하는 경향을 보였다. 결론적으로, 열처리 하지 않은 규조토의 경우 규조화석의 존재로 인해 다공질 구조를 가지며, 넓은 비표면적에 의해 보다 높은 암모니아 흡착특성을 보여 실제로 이와 같은 유해 화합물을 효과적으로 제거할 수 있는 능력이 있음을 보였다.

  • PDF

Phenolic plant extracts are additive in their effects against in vitro ruminal methane and ammonia formation

  • Sinz, Susanne;Marquardt, Svenja;Soliva, Carla R.;Braun, Ueli;Liesegang, Annette;Kreuzer, Michael
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.966-976
    • /
    • 2019
  • Objective: The methane mitigating potential of various plant-based polyphenol sources is known, but effects of combinations have rarely been tested. The aim of the present study was to determine whether binary and 3-way combinations of such phenol sources affect ruminal fermentation less, similar or more intensively than separate applications. Methods: The extracts used were from Acacia mearnsii bark (acacia), Vitis vinifera (grape) seed, Camellia sinensis leaves (green tea), Uncaria gambir leaves (gambier), Vaccinium macrocarpon berries (cranberry), Fagopyrum esculentum seed (buckwheat), and Ginkgo biloba leaves (ginkgo). All extracts were tested using the Hohenheim gas test. This was done alone at 5% of dry matter (DM). Acacia was also combined with all other single extracts at 5% of DM each, and with two other phenol sources (all possible combinations) at 2.5%+2.5% of DM. Results: Methane formation was reduced by 7% to 9% by acacia, grape seed and green tea and, in addition, by most extract combinations with acacia. Grape seed and green tea alone and in combination with acacia also reduced methane proportion of total gas to the same degree. The extracts of buckwheat and gingko were poor in phenols and promoted ruminal fermentation. All treatments except green tea alone lowered ammonia concentration by up to 23%, and the binary combinations were more effective as acacia alone. With three extracts, linear effects were found with total gas and methane formation, while with ammonia and other traits linear effects were rare. Conclusion: The study identified methane and ammonia mitigating potential of various phenolic plant extracts and showed a number of additive and some non-linear effects of combinations of extracts. Further studies, especially in live animals, should concentrate on combinations of extracts from grape seed, green tea leaves Land acacia bark and determine the ideal dosages of such combinations for the purpose of methane mitigation.

Effects of Cattle Manure and Swine Slurry Acidification on Ammonia Emission as Estimated by an Acid Trap System

  • Park, Sang-Hyun;Lee, Bok-Rye;Kim, Tae-Hwan
    • 한국초지조사료학회지
    • /
    • 제35권3호
    • /
    • pp.212-216
    • /
    • 2015
  • This study was conducted to assess the efficacy of slurry acidification in reducing ammonia emission from manure storage and application. The non-fermented cattle manure (NFC) and swine slurry (SS) were acidified by sulfuric acid and stored in an acryl chamber for 168 and 96 hours, respectively. Ammonia emitted from the chamber was collected using an acid trap system. The amount of ammonia emission was significantly reduced when the livestock manures were treated with sulfuric acid. The absolute amount of ammonia in NFC increased rapidly starting from 48 h and 72 h in the control (pH 8.6) and acidified NFC (pH 6.5), respectively. The absolute amount of ammonia was the highest at 96 h ($3.65g\;kg^{-1}h^{-1}$) in the control and at 144 h ($2.34g\;kg^{-1}h^{-1}$) in pH 6.5 NFC. The cumulative ammonia content in the control continuously increased until 96 h and was maintained until 168 h, whereas the increase rate of emission gas accumulation in acidified NFC was much less throughout the experimental period. Acidification of SS mitigated ammonia emission as proven in NFC. The cumulative amount of ammonia emission was decreased by 49.4% and 92.3% in the acidified SS at pH 6.5 and pH 5.5, respectively, compared to the control at 96 h after treatment. These results indicate that ammonia emission can be significantly reduced by sulfuric acid treatment of livestock manure during processing and the subsequent land application.

$Al^{3+}$ 이온이 첨가된 ZnO 반도체 가스 센서의 전기적 특성에 관한 연구 (A Study on the Electrical Characterisitics of $Al^{3+}$-doped ZnO Semiconductor Gas Sensor)

  • 정의남;이건형;김종대;김창욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.245-247
    • /
    • 1987
  • In this thesis, ZnO semiconductor gas sensors doped by the $Al^{3+}$ were fabricated by the miexed oxide method. The specimens were sintered for 5(hr) at $1000-1200^{\circ}C$ and the I-V, sensitivity were investigated in acetone gas or ammonia gas. As a result, I-V curves of specimens as a function of temperature variation showed characteristics of linear resistor that the current was proportional to the, temperature at constant voltage. For the sensitivity of acetone, 1Wt $Al^{3+}$-ZnO has the hight 0.91, ammonia gas, 2Wt $Al^{3+}$-ZnO specimen has the hight 0.90. Hence, the operating temperature of specimens were both $300^{\circ}C$.

  • PDF

플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성 (Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by Plasma-enhanced Chemical Vapor Deposition)

  • 오정근;주병권;김남수
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1248-1254
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and ate analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene(C$_2$H$_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen(H$_2$) gas plasma indicates better vortical alignment, lower temperature process, and longer tip, compared to that grown by ammonia(NH$_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be 2.6 V/${\mu}{\textrm}{m}$ We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성 (Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by plasma-enhanced chemical vapor deposition)

  • 오정근;주병권;김남수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.71-75
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and are analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene($C_2H_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen($H_2$) gas plasma indicates better vertical alignment, lower temperature process and longer tip, compared to that grown by ammonia($NH_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be $2.6\;V/{\mu}m$. We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

  • PDF

MEMBRANE-BASED GAS AND VAPOR SEPARATIONS

  • Wijmans, Hans
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.3-6
    • /
    • 2004
  • Industrial gas separation by membranes began in 1980 with the introduction of hollow-fiber polysulfone membrane systems by Permea, at that time a division of Monsanto. This first application was the recovery of hydrogen from ammonia reactor purge gas and was soon followed by the generation of nitrogen from air. Today, membrane gas separation ranks second behind cryogenic distillation in terms of nitrogen production, and this application has drawn the industrial gas companies into the membrane field.(omitted)

  • PDF

Mixer design for improving the injection uniformity of the reduction agent in SCR system

  • Hwang, Woohyeon;Lee, Kyungok
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, we propose a method to optimize the geometry and installation position of the mixer in the selective catalytic reduction (SCR) system by computational fluid dynamic(CFD). Using the commercial CFD software of CFD-ACE+, the flow dynamics of the flue gas was numerically analyzed for improving the injection uniformity of the reduction agent. Numerical analysis of the mixed gas heat flow into the upstream side of the primary SCR catalyst layer was performed when the denitrification facility was operated. The characteristics such as the flow rate, temperature, pressure loss and ammonia concentration of the mixed gas consisting of the flue gas and the ammonia reducing gas were examined at the upstream of the catalyst layer of SCR. The temperature difference on the surface of the catalyst layer is very small compared to the flow rate of the exhaust gas, and the temperature difference caused by the reducing gas hardly occurs because the flow rate of the reducing gas is very small. When the mixed gas is introduced into the SCR reactor, there is a slight tendency toward one wall. When the gas passes through the catalyst layer having a large pressure loss, the flow angle of the exhaust gas changes because the direction of the exhaust gas changes toward a smaller flow. Based on the uniformity of the flow rate of the mixed gas calculated at the SCR, it is judged that the position of the test port reflected in the design is proper.

Recovery of ammonia from wastewater by liquid-liquid membrane contactor: A review

  • Jang, Yoonmi;Lee, Wooram;Park, Jaebeom;Choi, Yongju
    • Membrane and Water Treatment
    • /
    • 제13권3호
    • /
    • pp.147-166
    • /
    • 2022
  • Liquid-liquid membrane contactor (LLMC), a device that exchanges dissolved gas molecules between the two sides of a hydrophobic membrane through membrane pores, can be employed to extract ammoniacal nitrogen from a feed solution, which is transported across the membrane and accumulated in a stripping solution. This LLMC process offers the promise of improving the sustainability of the global nitrogen cycle by cost-effectively recovering ammonia from wastewater. Despite recent technological advances in LLMC processes, a comprehensive review of their feasibility for ammonia recovery is rarely found in the literature. Our paper aims to close this knowledge gap, and in addition to analyze the challenges and provide potential solutions for improvement. We begin with discussions on the operational principles of the LLMC process for ammonia recovery and membrane types and membrane configurations commonly used in the process. We then assess the performance of the process by reviewing publications that demonstrate its practical application. Challenges involved in the implementation of the LLMC process, such as membrane fouling, membrane wetting, and chemical requirements, are presented, along with discussions on potential strategies to address each. These strategies, including membrane modification, hybrid process design, and process optimization based on cost-benefit analysis, guide the reader to identify key areas of future research and development.