• 제목/요약/키워드: ammonia concentration

검색결과 1,146건 처리시간 0.034초

Direct Detection of Water-dissolved Ammonia Using Paper-based Analytical Devices

  • Yeong Beom Cho;Duc Cuong Nguyen;Si Hiep Hua;Yong Shin Kim
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.67-74
    • /
    • 2023
  • A microfluidic paper-based analytical device (µPAD) is proposed for the selective detection of ammonia in water by using the modified Berthelot reagent and a fluidic channel consisting of hollow paper. The modified Berthelot reagents were uniformly dispersed in cyclohexane and then immobilized in a detection zone of the µPAD. The loading position of the reagents and the type of a sample flow channel were optimized to achieve a sensitive ammonia detection within a short analytical time. The NH3 µPAD exhibits a linear colorimetric response to the concentration of ammonia dissolved in water in the range of 1-100 mg L-1, and its limit-of-detection is 1.75 mg L-1. In addition, the colorimetric response was not influenced by the addition of 100 mg L-1 nitrogen containing compounds (sodium nitrate, sodium nitrite, uric acid, hydroxylamine, butylamine, diethylamine) or inorganic salts (NaCl, Na2HPO4), presenting the enough selectivity in the detection of water-dissolved ammonia against possible interferents.

나노펄스 코로나 방전의 온도 변화에 따른 이산화황 및 일산화질소 제거에 관한 실험적 연구 (The Experimental Study on Removal of Sulfur Dioxide and Nitrogen Oxide Using a Nano-Pulse Corona Discharger at Different Temperatures)

  • 한방우;김학준;김용진
    • 한국대기환경학회지
    • /
    • 제27권4호
    • /
    • pp.387-394
    • /
    • 2011
  • A study on the removal of sulfur dioxide and nitrogen oxide was carried out using a non-thermal nano-pulse corona discharger at different gas temperatures. Pulse voltage with a high voltage of 50 kV, a pulse rising time of about 100 ns, a full width at half maximum of about 500 ns and a frequency of 1 kHz was applied to a wire-cylinder corona reactor. Ammonia and propylene gases were added into the corona reactor as additives with a static mixer. Ammonia addition had less effect on $SO_2$ reduction at the higher temperature because of the retardation of ammonium sulfate formation. However, propylene addition enhanced NO reduction at higher temperature due to increased gas mixture. $SO_2$ was further removed at the mixed $SO_2$ and NO gas due to increased $NO_2$ by the conversion of NO. The addition of ammonia and propylene gases was more highly dominant for the removal of sulfur dioxide compared to the sole pulse corona without the additives. However, the specific energy density per unit concentration of pulse corona as well as propylene additive was an important factor to remove NO gas. Therefore, the specific energy density per unit concentration of 0.04 Wh/($m^3{\cdot}ppm$) was necessary for the NO removal of more than 80% with the concentration ratio of 2.0 for propylene and NO. Hydrogen peroxide was another alternative additive to remove both $SO_2$ and NO in the nano-pulse corona discharger.

Impact of Temperature and Alkalinity on Nitrogen Removal in the Start-up Period of Partial Nitrification in a Sequence Batch Reactor

  • Nguyen Van Tuyen;Tran Hung Thuan;Chu Xuan, Quang;Nhat Minh Dang
    • 공업화학
    • /
    • 제34권5호
    • /
    • pp.541-547
    • /
    • 2023
  • The effect of temperature and influent alkalinity/ammonia (K/A) ratio on the start-up of the partial nitrification (PN) process for an activated sludge-based domestic wastewater treatment was studied. Two different sequence batch reactors (SBR) were operated at 26 ℃ and 32 ℃. The relationship between temperature and the concentration of free ammonia (FA) and free acid nitrite (FNA) was investigated. A stable PN process was achieved in the 32 ℃ reactor when the influent ammonium concentration was lower than 150 mg-N/L. In contrast, the PN process in the 26 ℃ reactor had a higher nitrite accumulation rate (NAR) and ammonium removal efficiency (ARE) when the influent ammonia concentration was increased to more than 150 mg-N/L. Then three different ranges of the K/A ratio were applied to an SBR reactor. In the K/A range of 2.48~1.65, the SBR reactor achieved the highest NAR ratio (75.78%). This ratio helps to achieve the appropriate level of alkalinity to maintain a stable pH and provide a sufficient amount of inorganic carbon source for the activity of microorganisms. At the same time, FA and FNA values also reached the threshold to inhibit nitrite-oxidizing bacteria (NOB) without a significant effect on ammonia-oxidizing bacteria (AOB). Results showed that the control of temperature and K/A ratio during the start-up period may be important in establishing a stable and steady PN process for the treatment of domestic wastewater.

김해시 본산공단 주변지역의 환경대기 중 주요 악취물질의 농도 특성에 관한 연구 (Odorous Compound Concentration Levels in Bon-San Industrial Area and Its Surrounding Regions)

  • 정성욱;변기영;박흥재
    • 한국환경과학회지
    • /
    • 제21권1호
    • /
    • pp.49-55
    • /
    • 2012
  • In this study, the characteristic of offensive major odorous compound from the Bon-San industrial complex in Gimhae were determined by analytical methods of Gas Chromatography, High Performance Liquid Chromatography and UV/VIS Spectrophotometer. The kind of major odorous compounds examined acetaldehyde, sulfur compounds, ammonia and styrene. The concentration of all odorous compounds at 3 sampling points of industrial complex were lower than those of regulation standard levels of the industrial complex in Korea. The mean concentration of hydrogen sulfide was 0.0235 ppm at sampling point 2, it was higher than other sampling point. Complex odors was lower than regulation standard levels of the industrial complex in Korea.

광화학 상자모델과 기체/입자 평형모델을 이용한 서울ㆍ수도권의 계절별 질산염 농도 변화 (Seasonal Variation of Nitrate in the Greater Seoul Area Using a Photochemical Box Model and a Gas/Aerosol Equilibrium Model)

  • 이시혜;김영성;김용표;김진영
    • 한국대기환경학회지
    • /
    • 제20권6호
    • /
    • pp.729-738
    • /
    • 2004
  • Seasonal variation of major inorganic ions in the greater Seoul area was estimated using a photochemical box model and a gas/aerosol equilibrium model with emphasis on semi -volatile nitrate. Pollutant emission was determined by season by comparing the predicted concentration with the measurement one obtained for a year from the late 1996. The results showed that particulate nitrate was the highest in summer but about 40% of total nitrate was present in the gas phase. This was due to volatilization at high temperature since ammonia was sufficient to neutralize all nitrate regardless of season. As relative humidity in summer was higher than the deliquescence point, particulate ion concentration with water was two times higher than that in other season. So called ‘NOx disbenefit’ indicating increase in particulate ion concentration with decrease in NOx emission was evident especially in winter.

확산형 흡수식 냉장고에서 작동매체 충진조건이 증발온도에 미치는 영향 (Effects of Charging Conditions on Evaporating Temperature for Diffusion Absorption Refrigerator)

  • 김선창;김영률;백종현;박승상
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.828-834
    • /
    • 2003
  • A diffusion absorption refrigerator is a heat-generated refrigeration system. It uses a three-component working fluid consisting of the refrigerant (ammonia), the absorbent (water) and the auxiliary gas (hydrogen or helium). In this study, experimental investigations have been carried out to examine the effects of charging conditions of working fluids on the evaporating temperature for diffusion absorption refrigerator. Experimental parameters considered in the present experiments are charging concentration, solution charge and system pressure determined by auxiliary gas charged. As a result, in the charging condition of 35% of concentration and 20 kg$_{f}$cm$^2$ of system pressure, the system has the lowest evaporating temperature. It was found that there exists a minimum value of solution charge for the operation of diffusion absorption refrigerator.r.

축분 퇴비화 과정 중 퇴비 부숙도를 고려한 암모니아 발생량 산정 (Estimation of Ammonia Emission During Composting Iivestock Manure Based on the Degree of Compost Maturity)

  • 김기연;최홍림;고한종;김치년
    • Journal of Animal Science and Technology
    • /
    • 제48권1호
    • /
    • pp.123-130
    • /
    • 2006
  • 본 연구는 축분 퇴비화시 대기 중으로 배출되는 암모니아 발생량을 퇴비 부숙 단계에 따라 예측할 수 있는 통계적 모델을 제안하는 데 있다. 퇴비의 발아지수를 근거로 퇴비화 단계를 초기, 중기 및 후기로 구분하였으며, 퇴비화시 암모니아 발생에 기여하는 독립변수로 총 질소와 유기물 함량을 선정하였다. 암모니아 농도는 퇴비화 초기에 10ppm 정도의 낮은 농도를 보이다가 중기에 50ppm까지 증가한 후 후기에는 경시적으로 감소하여 다시 10ppm 정도로 저감되는 경향을 보였다. 총 질소와 유기물의 함량은 퇴비화 전체 기간 동안 각각 0.6 ~1.2%, 30~40%의 범위를 보였으며, 퇴비화 중기에 약간 저감되는 현상이 관찰되었으나 전반적으로 일정한 증감 변화 양상은 나타나지 않았다. 통계적 기법을 적용한 퇴비 부숙 단계별 암모니아 발생량 산정에 있어 암모니아 농도가 가장 높게 나타난 퇴비화 중기에 독립변수에 대한 계수가 가장 높은 값을 나타내었고 가장 낮았던 퇴비화 초기에 가장 낮은 값을 보였으나, 통계적 유의성은 없었다. 퇴비화시 암모니아 발생량 예측 모델을 통계적으로 유의한 수준으로 제안하기 위해서는 많은 수의 시료 채취 및 분석 자료 연구가 향후 수행되어야 할 것이다.

촉매성 산화물 전극에 의한 암모니아의 전기 화학적 분해 특성 (Electrochemical Decomposition Characteristics of Ammonia by the Catalytic Oxide Electrodes)

  • 김광욱;김영준;김인태;박근일;이일희
    • Korean Chemical Engineering Research
    • /
    • 제43권1호
    • /
    • pp.9-15
    • /
    • 2005
  • 본 연구에서는 전기화학적 방법에 의한 암모니아의 질소화 분해 특성을 파악하기 위하여 여러 암모니아 전해 실험 변수에 대하여 조사하였다. $IrO_2$, $RuO_2$, Pt 양극에서 암모니아의 분해에 대한 pH 및 염소 이온의 영향이 상호 비교되었으며, 전해 반응기에서의 분리막의 존재 유무, 전류밀도, 암모니아 초기 농도 등의 변화에 따른 암모니아의 전기화학적 분해 특성이 조사되었다. 산성이나 알칼리 조건에서 암모니아의 분해에 대한 전극의 성능은 전체적으로 $RuO_2{\approx}IrO_2>Pt$ 순으로 나타났다. 암모니아의 분해는 전극에 공급되는 전류 밀도가 $80mA/cm^2$에서 가장 높았으며 그 이상의 전류 밀도에서는 산소발생에 의해 암모니아의 전극 흡착이 영향을 받아 오히려 감소되었다. 암모니아 용액에 존재하는 염소 이온의 농도가 증가할수록 암모니아의 분해는 증가하나 10 g/l 이상에서는 분해율 증가가 크게 둔화되었다. pH 7의 전해 반응의 경우 전극 표면에서 OH 라디칼이 생성되어 암모늄 이온의 분해가 이루어지는데, 이 OH 라디칼은 $RuO_2$ 전극에서 가장 많이 생성이 되었다.

Salt Acclimation Behavior of the Nitrifier Consortium for the Nitrification of Saline Wastewater

  • Seo, Jae-Koan;Kim, Sung-Koo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.590-593
    • /
    • 2001
  • The effect of salinity on the nitrification efficiency of the nitrifier consortium was evaluated for the nitrification of saline wastewater. The nitrifier consortium, which was the activated sludge acclimated with ammonium as the only energy source, was used as the nitrifier for the salt acclimation. Airlift reactors for the nitrification of ammonia with increasing concentration in saline synthetic wastewater (35 g/I NaCD, and synthetic wastewater without salt as a control, were continuously operated with the nitrifier consortium for 43 days. The ammonia removal rate was about 23g ammonia-N/$m^3$/day in both the absence and presence of the salt. An accumulation of nitrite was observed in the saline nitrification reactor at an early period. However, the nitrite decreased to less than 1 mg/l after 39 days of operation. The salinity increased the acclimation time of the nitrifier consortium to obtain a stable marine nitrification system. However, the salt acclimated system showed the efficient removal of ammonia which was same as that without salt.

  • PDF

Development of an Automated Diffusion Scrubber-Conductometry System for Measuring Atmospheric Ammonia

  • Lee, Bo-Kyoung;Lee, Chong-Keun;Lee, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2039-2044
    • /
    • 2011
  • A semi-continuous and automated method for quantifying atmospheric ammonia at the parts per billion level has been developed. The instrument consists of a high efficiency diffusion scrubber, an electrolytic on-line anion exchange device, and a conductivity detector. Water soluble gases in sampled air diffuse through the porous membrane and are absorbed in an absorbing solution. Interferences are eliminated by using an anion exchange devises. The electrical conductivity of the solution is measured without chromatographic separation. The collection efficiency was over 99%. Over the 0-200 ppbv concentration range, the calibration was linear with $r^2$ = 0.99. The lower limit of detection was 0.09 ppbv. A parallel analysis of Seoul air over several days using this method and a diffusion scrubber coupled to an ion chromatography system showed acceptable agreement, $r^2$ = 0.940 (n = 686). This method can be applied for ambient air monitoring of ammonia.