• Title/Summary/Keyword: aminopeptidase M inhibitor

Search Result 14, Processing Time 0.027 seconds

Characterization of the Mutant of Streptomyces sp. SL-387(KCTC 0102BP) Producing Aminopeptidase M Inhibitors (Aminopeptidase M 저해제를 생산하는 Streptomyces sp. SL-387 (KCTC 0102BP) 변이주의 특성)

  • Chung, Myung-Chul;Chun, Hyo-Kon;Lee, Ho-Jae;Lee, Choong-Hwan;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.47-52
    • /
    • 1995
  • Since the original productivity of new aminopeptidase M inhibitors MR-387A and B by Streptomyces sp. SL-387 (KCTC 0102BP) was not enough for further chemical and biological evaluation, mutation of parent strain by the treatment of N-methyl-N'-nitro-N-nitrosoguanidine was performed in order to obtain a clone with greater inhibitory activity. Mutant N-3 was selected due to a 6-fold greater productivity (40 $\mu$g/ml) than that of the wild type(6.7 $\mu$g/ml). This mutant was resistant to 3,4-dehydro-DL-proline, an antimetabolite of proline, with 25 $\mu$g/ml of minimum inhibitory concentration. Furthermore, the characteristic morphological change from spiral spore chain in wild type to straight in mutant was observed. An aminopeptidase M nhibitor different from MR-387A and B was isolated from the culture broth of the mutant. This inhibitor was composed of 2 proline, 1 valine, and an unknown amino acid which is presumably 3-amino-4-phenylbutanoic acid. IC$_{50}$ value (89.1 $\MU$g/ml) of the purified inhibitor was lower than that of other inhibitors, which may be due to the absence of 2(S)-hydroxyl group within the structure of 3-amino-4-phenyl- butanoic acid.

  • PDF

The Novel Synthetic Substance MR-387C[(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-valyl-L-prolyl-L-leucine] as an Aminopeptidase M Inhibitor

  • Chung, Myung-Chul;Chun, Hyo-Kon;Lee, Ho-Jae;Kho, Yung-Hee
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.83-86
    • /
    • 1995
  • In the course of screening for new aminopeptidase M inhibitors which were expected to be analgesic, immunopotentiating, or anti-metastatic agents, the novel synthetic substance MR-387C[(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-valyl-L-prolyl-L-leucine] (M.W. 504 daltons) was obtained. It was competitive with the substrate and had an $IC_{50}$ value of $0.04\;{\mu}m/ml$ ($7.9{\times}10^{-8}\;M$) and an inhibition constant ($K_i$) of $3.8{\times}10^{-8}\;M$. This novel MR-387C was compared with various known inhibitors of aminopeptidase M. It inhibited the enzyme more strongly than any other microorganism-originated inhibitor, except probestin.

  • PDF

Fermentation of MR-387A and B, Novel Aminopeptidase M Inhibitors by Streptomyces sp. SL-387: Phosphate Repression of Inhibitor Formation

  • YUNG-HEE KHO;CHUNG, MYUNG-CHUL;HYO-KON CHUN;HO-JAE LEE;CHOONG-HWAN LEE,;SU-IL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.213-217
    • /
    • 1995
  • The effect of inorganic phosphate on the fermentative production of aminopeptidase M inhibitors MR-387A and B by Streptomyces sp. SL-387 has been studied. With inorganic phosphate concentrations higher than 0.78 mM, an inverse correlation was found between the maximum inhibitor production and the initial phosphate concentration added. Growth sensitivity of this actinomycete to arsenate, a phosphate analogue, and the use of magnesium carbonate, a phosphate-trapping agent, suggested that the inhibitor formation was under phosphate repression. Exogenous ATP further increased the degree of phosphate interference in both phosphate-repressed and non repressed culture conditions. The use of a phosphate analogue and a protein synthesis inhibitor also suggested that the phosphate itself repressed inhibitor formation.

  • PDF

Inhibition of Aminopeptidase N by Two Synthetic Tripeptides

  • Chung, Myung Chul;Hyo Kon Chun;Ho Jae Lee;Choong Hwan Lee;Su Il Kim;Yung Hee Kho
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.7-11
    • /
    • 1996
  • MR-387Al (ARPA-Val-Pro) and A2 (AHPA-Val-Hyp) were prepared as aminopeptidase N inhibitors through the synthesis of peptide MR-387A and B analogues which contained 3-amino-2-hydroxy-4-phenyl butanoic acid (ARPA) as a zinc-chelating moiety. They are competitive inhibitors of aminopeptidase N with inhibition constants(Ki) of 4.1 $\times 10^{-7}\;and 1.1 \times 10^{-6}$ M, respectively. MR-387Al also strongly inhibited aminopeptidase B of human myelogenous leukemia K-562 cell with $IC_50$ of 0.35 $\mu$ M. Inhibitions of aminopeptidase N activity by ARPA-bearing inhibitors of various peptide chain lengths also have been studied. $IC_ 50$ values of AHPA-Val (bestatin), ARPA-Val-Pro (MR-387Al) and ARPA-Val-Pro-Leu (MR-387C) compared against porcine kidney aminopeptidase N were 20.1, 0.60 and 0.08 $\mu$ M, respectively. These results support that a multiple interaction between the $S_1\to S'_3$ sites of aminopeptidase N and the $P_1\to P'_3$ of the inhibitor plays a crucial role in stabilizing strongly the enzyme-inhibitor complex.

  • PDF

Fermentation of MR-387A and H, Novel Aminopeptidase M Inhibitors by Streptomyces sp. SL-387 : Carbon and Nitrogen Catabolite Repression of Inhibitor Formation

  • Kho, Yung-Hee;Chung, Myung-Chul;Chun, Hyo-Kon;Lee, Choong-Hwan;Lee, Ho-Jae;Kim, Su-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.158-162
    • /
    • 1995
  • The effect of carbon and nitrogen sources on the production of novel aminopeptidase M inhibitors MR-387A and B by Streptomyces sp. SL-387 has been studied. High D-glucose and ammonia concentrations (5$\%$ and 1$\%$, respectively) exerted a negative influence on the inhibitor formation. The suppressive effect of glucose on the inhibitor formation is probably caused by an effect of medium pH rather than that of cyclic AMP. To establish the optimum conditions for inhibitor overproduction, various nitrogen sources and ammonium ion-trapping agents were examined. The use of ammonia slow-releasing nitrogen sources such as soybean meal and fish meal, or ammonium ion-trapping agents such as kaoline, celite, and natural zeolite achieved the enhancement of inhibitor production. These results also indicate that inhibitor formation is affected by ammonium ion repression.

  • PDF

Valistatin (3-Amino-2-Hydroxy-4-Phenylbutanoyl-Valyl-Valine), a New Aminopeptidase M Inhibitor, Produced by Streptomyces sp. SL20209

  • Kho, Ying-Hee;Ko, Hack-Ryong;Chun, Hyo-Kon;Jung, Myung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.36-40
    • /
    • 1995
  • Valistatin, a new inhibitor of aminopeptidase M(AP-M) was discovered in the culture broth of Streptomyces sp. SL20209 isolated from a soil sample. The inhibitor was purified by extraction with n-butanol and the various column chromatographies, and then isolated as whitish powder. The $^1 H-and ^1 H, ^1 H-COSY$ NMR studies, amino acid analysis, and fragmentation patterns by FAB-MS suggested the presence of one 3-amino-2-hydroxy-4-phenylbutanoic acid and two valine residues in the inhibitor. Thus, the structure of valistatin was determined as 3-amino-2-hydroxy-4-phenylbutanoyl-valyl-valine. Valistatin has the molecular formular $C_20H_31N_3 O_5$ (MW 394), and its $IC_50$ value against hog kidney AP-M was determined to be 3.12 $mu g/ml$.

  • PDF

The Slow and Tight Binding of MR-387A to Aminopeptidase N

  • CHUNG, MYUNG-CHUL;HYO-KON CHUN;HO-JAE LEE;CHOONG-HWAN LEE;SU-IL KIM;YUNG-HEE KHO
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.250-254
    • /
    • 1996
  • MR-387A [(2S, 3R)-2-hydroxy-3-amino-4-phenylbutanoyl-L-valyl-L-prolyl-(2, 4-trans)- L-4-hydroxy-proline] reversibly inhibits aminopeptidase N (BC 3.4.11.2) in a process that is remarkable for its unusual degree of time dependence. The time required to inactivate the enzyme by 50$%$ ($t_{1/2}$) for establishing steady-state levels of $EI^*$complex was approximately 5 minutes. This indicates that the inhibition is a slow-binding process. In dissociation experiments of $EI^*$ complex, enzymic activity was regained slowly in a quadratic equation, indicating that the inhibition of aminopeptidase N by MR-387A is tight-binding and reversible. Thus, the binding of MR-387A by aminopeptidase N is slow and tight, with $K_{i}$ (for initial collision complex, EI) and $K_i{^*}$ (for final tightened complex, $EI^*$) of $2.2\times10^{-8}$ M (from Lineweaver-Burk plot) and $4.4\times10^{-10}$ M (from rate constants), respectively. These data indicate that MR-387A and aminopeptidase N are bound approximately 200-fold more tightly in the final $EI^*$complex than in the initial collision EI complex.

  • PDF

Taxonobic Characteristics of Strain Producing MR-387A and B,New Inhibitors of Aminopeptidase M,and their Production (신규의 Aminopeptidase M 저해제 MR-387A와 B를 생산하는 균주의 동정 및 저해제의 생산)

  • Chung, Myung-Chul;Chun, Hyo-Kon;Lee, Ho-Jae;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.447-452
    • /
    • 1994
  • The strain SL-387 which produces new inhibitors of aminopeptidase M, MR-387A and B, was isolated from a soil sample. The strain has branched substrate mycelia, from which aerial hyphae develop in the form of open spirals. Spore surface is smooth. Melanoid and soluble pigme- nts were observed. The isolate contains LL-diaminopimelic acid in its cell wall hydrolysate, and has no pectinolytic activity. The strain SL-387 is closely related to Streptomyces griseoruber and S. naganishii, but is different from these strains in some cultural and physiological characteristics. This strain was, therefore, designated as Streptomyces sp. SL-387. The effects of several carbon and nitrogen sources on the production of the inhibitor were examined. Among them, glucose, galactose, mannose, and xylose were effective as a carbon source and soybean meal, soytone, fish meal, and gluten meal were effective as a nitrogen source. The maximum peak of the inhibitor production in jar fermentor was obtained on the fifth day of culture.

  • PDF

des-$Asp^4$-Amastatin, MRK-22 as an Inhibitor of Aminopeptidase M produced by Streptomyces sp. SL20209

  • Kho, Yung-Hee;Ko, Hack-Ryong;Chun, Hyo-Kon;Kim, Seung-Ho;Sung, Nack-Kie
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.154-157
    • /
    • 1995
  • MRK-22, an inhibitor of aminopeptidase M was isolated from the culture broth of Streptomyces sp. SL20209. The structure of MRK-22 was defined to be 3-amino-2-hydroxy-5-methylhexanoyl-valyl-valine, des-$Asp^4$-amastatin, by spectroscopic analysis and this was also confirmed by solid phase synthesis of the inhibitor. The molecular formula and weight of MRK-22 were $C_17H_33N_3O_5$ and MW 359($M^+$), respectively, and its $IC_50$ value against hog kidney AP-M was 0.79 $\mu$ g/ml.

  • PDF

Occurrence of OF494911 in the Fungal Mat formed by Surface Culture of Aspergillus niger F-580

  • Chun, Hyo-Kon;Chung, Myung-Chul;Ko, Hack-Ryong;Lee, Ho-Jae;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.5
    • /
    • pp.280-284
    • /
    • 1995
  • Aspergi11us niger F-580, a potent producer of aminopeptidase M inhibitor, was isolated from the brown spots of plant leaves with a pathological trait. The inhibitory activity was found only in the fungal mat formed by surface culture of Aspergi11us niger F-580, but not in the culture supernatant or cell pellet. The inhibitor was purified from the hot water extract of this fungal mat by using chromatographies on Diaion HP-20, DEAE-cellulose, Sephadex G-l0 and YMC-ODS-AQ columns. The purified inhibitor was analyzed by UV, mass, and NMR spectroscopies, and identified as OF494911, which had been isolated as an aminopeptidase B inhibitor from Penicillium rugulosum OF4949

  • PDF